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Abstract 

Increasing crime rates and evolving challenges in law enforcement have raised the need for 

innovative solutions, leading to the emergence of smart policing. This paradigm shift 

incorporates artificial intelligence (AI) with a specific focus on machine learning (ML) as a 

pivotal tool for data analysis, pattern recognition, and proactive crime forecasting. Large-

language models (LLMs) as a subset of generative AI have been used in different domains, such 

as financial, medical, legal, and agricultural applications. However, the abilities and possibilities 

of adopting LLMs for smart policing applications such as crime classification remain 

unexplored. This paper explores the transformative potential of BART, GPT-3, and GPT-4, three 

state-of-the-art LLMs, in the domain of crime analysis and predictive policing. Utilizing diverse 

methods such as zero-shot prompting, few-shot prompting, and fine-tuning, this paper 

evaluates the performance of these models on state-of-the-art datasets from two major cities: 

San Francisco and Los Angeles. The goal is to demonstrate the adaptability of LLMs and their 

capacity to revolutionize conventional crime analysis practices. The paper also provide a 

comparative analysis of the aforementioned methods on the GPT series model and BART, in 

addition to ML techniques, showing that GPT models are more suitable for crime classification 

in most of our experimental scenarios. 

Keywords:   Large language models, LLMs, fine-tuning, zero-shot prompting, few-

shot prompting, crime prediction 

1. Introduction 

The rise in crime rates and multiple challenges they pose have led to a growing demand 
for effective crime forecasting and prevention measures. Smart policing has emerged in this 
landscape in response to the pressing need for innovative solutions in law enforcement [1]. 
Police agencies, crime labs, and courts have increasingly embraced artificial intelligence for a 
wide range of purposes, such as administrative tools, facial recognition, surveillance cameras, 
DNA matching, and bail and sentencing. By harnessing the power of accumulated data and AI 
capabilities, smart policing offers a framework for data analysis and pattern recognition, 
enabling authorities to identify emerging criminal patterns and trends effectively [2]. These 
tools have the potential to speed up data processing and analysis for law enforcement while 
mitigating the influence of human biases [3]. 

Furthermore, predictive policing has been introduced as a research subfield of smart 
policing, which involves the use of a range of technologies, such as crime documentation, 
predictive crime maps, advanced computer software, and artificial intelligence algorithms. 
Predictive policing enables police to use predictive analytics, make forecasts regarding the 
occurrence of future crimes, and identify potential criminals and victims. Predictive policing 
leverages ML algorithms and statistical analysis methods to forecast criminal activities, 
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including key details such as location, date, time, crime type, and potential victims, by 
analyzing both historical and real-time crime data [4]. The underlying idea of predictive 
policing is rooted in the theory that crimes do not occur randomly; instead, they follow 
patterns influenced by local environmental conditions and situational decision-making of 
potential victims [5].  

A large language model (LLM) is a class of artificial intelligence models, typically based on 
deep learning, specifically designed to comprehend and generate human language. These 
models are characterized by their enormous size, often containing hundreds of millions or 
even billions of parameters, which allows them to perform a wide range of natural language 
understanding and text generation tasks [6]. For crime prediction tasks, an ML model can be 
trained on inputs to output labels from a fixed set of classes. However, recent advances in 
LLMs such as BERT [7] and GPT-3 [6]  have introduced a novel approach known as prompting. 
In prompting, there is typically no need for further training; instead, the model's input 
contains a task-specific text called a prompt. Prompt engineering involves creating, 
evaluating, and recommending prompts for natural language processing (NLP) tasks, 
enabling professionals to use LLMs for tasks such as data annotation, classification, and 
question answering. The other way to take advantage of powerful LLMs is by adopting them 
for specific tasks in fine-tuning.  

The primary objective of this paper was to investigate the potential of LLMs within the 
domain of smart policing, with a specific focus on predictive policing using classification and 
prediction. Our approach involves the application of prompting and fine-tuning methods on 
BART and GPT models based on two state-of-the-art crime datasets of Los Angeles City and 
San Francisco City. Through this research, we aim to shed light on the potential of LLMs to 
revolutionize crime analysis practices and enhance the efficacy of predictive policing 
techniques. To this end, the remainder of this paper is organized as follows. Section 2 provides 
an overview of related work in crime classification and prediction, along with background 
information on LLMs. Section 3 discusses the prompting methods and fine-tuning methods 
used. Section 4 explains the structure of the datasets employed in the experiments. Section 5 
presents the results collected from our experiments and a detailed discussion and 
comparison of the methods used. Finally, Section 6 concludes the paper and highlights 
potential avenues for future work. 

 

2. Related Work 

Predictive policing as a part of smart policing has been helpful in addressing crime-related 
challenges. These strategies rely on various techniques, including mapping techniques, ML, 
and NLP [8]. These techniques can be employed to classify crime incidents based on their 
characteristics and predict the future occurrence of crimes in specific locations, or to identify 
individuals who are most likely to engage in criminal activities. 

Various mapping techniques have been employed to identify crime hotspots, which can be 
inferred as a basic form of crime prediction. These techniques include point mapping, 
thematic mapping of geographic areas, spatial ellipses, grid thematic mapping, and kernel 
density estimation (KDE). KDE is widely used for visualizing crime data because it effectively 
identifies hotspots without being constrained by geometric shapes such as ellipses [9]. 
Despite the popularity of these techniques, there are concerns about producing variations in 
maps with the same data or their potentially misleading apparel.  

More recently, ML has become a valuable tool for crime prediction tasks, such as 
identifying crime hotspots and predicting crime categories. Various ML techniques, including 
support vector machines, naïve Bayes, artificial neural networks, K-nearest neighbors, 
decision trees, and random forests, have been employed in this context [8]. A paper provides 
a comprehensive analysis of ML methods for crime prediction using crime datasets from 
Chicago and Los Angeles. This paper suggests that XGBoost is the best choice for crime 
prediction, with an accuracy score of 94% for the Chicago dataset and 88% for the Los Angeles 
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dataset [10].  In another paper, the authors used naïve Bayes and back propagation neural 
networks to identify and predict crime categories based on socioeconomic datasets related to 
various locations in the United States. Their experiments showed that naïve Bayes 
outperformed neural networks with an accuracy of 94.08% [11], whereas, in a similar study 
on crime category prediction in the United States, decision trees outperformed naïve Bayes 
[12]. Decision tree is a popular and powerful ML algorithm in this context, as shown in [13], 
which compares decision tree j48 with a support vector machine, naïve Bayes, and neural 
network. The authors in [14] also suggested crime category prediction in specific 
geographical areas using naïve Bayes and decision tree based on historical incident data 
sourced from the Chicago Police Department’s CLEAR system; both algorithms were applied 
to the top nine selected features from the dataset, and as a result, the decision tree 
outperformed naïve Bayes.  

Deep learning methods, such as Convolutional Neural Networks (CNNs), Recurrent Neural 
Networks (RNNs), and Generative Adversarial Networks (GAN), have gained attention in the 
realm of smart policing. In a study that combined RNN and CNN to predict crime categories, 
the feedforward neural network achieved an accuracy of 71.3%, CNN achieved an accuracy of 
72.7%, RNN gained an accuracy of 74.1%, and their proposed method improved the accuracy 
by 1.5% [15].  

Studies have also explored unsupervised learning and crime linkage using NLP. Crime 
linkage aims to identify crimes committed by the same individuals, whereas unsupervised 
NLP techniques have been employed to cluster crimes and inform policing strategies [16]. 
Moreover, there is an emerging interest in utilizing NLP to analyze social media data, such as 
Twitter, to predict crime rates in cities [17].  

In recent years, LLMs, such as GPT models, have attracted interest and have drawn 
attention from law enforcement agencies for their potential use in smart policing. According 
to previous studies, while LLMs hold promise for supporting policing through NLP, ethical 
concerns must be addressed [3].  The selection of BART, GPT-3, and GPT-4 for this paper was 
motivated by their distinct architectures and capabilities, which contributed to a 
comprehensive exploration of LLMs. Additionally, these models have been studied and 
considered for adoption across diverse applications, highlighting their versatility and 
potential effectiveness.  GPT models offer a powerful contextual understanding, making them 
suitable candidates for tasks requiring comprehension of textual information. GPT-3, or the 
"Generative Pre-trained Transformer 3," is a cutting-edge model belonging to the transformer 
architecture family. With an impressive scale of 175 billion parameters, it utilized the same 
model structure as GPT-2, featuring alternating dense and sparse attention layers. Its 
extensive pre-training on diverse Internet text data enables it to generalize effectively across 
various domains, making it proficient in tasks ranging from article writing to question 
answering and code creation [18]. GPT-4 was introduced in March 2023, representing a 
significant advancement by incorporating multimodal signal processing along with text input. 
GPT-4 prioritizes safety in development practices, addressing concerns such as 
hallucinations, privacy, and overreliance with the introduction of intervention strategies such 
as red teaming. The model is built on a deep learning architecture based on the concept of 
predictable scaling, ensuring accurate performance forecasting with minimal computation 
during training and improved overall efficiency and predictability [19]. By including GPT-4 in 
our paper, we aimed to assess the impact of model advancements on crime prediction 
performance in comparison with GPT-3. 

BART, short for bidirectional and autoregressive transformers, is another LLM with a 
denoising autoencoder designed for pre-training sequence-to-sequence models [20]. BART 
employs a standard transformer-based neural machine translation architecture that is 
powerful in capturing contextual dependencies in textual data. Despite its simplicity, BART's 
design draws inspiration from and extends the capabilities of other prominent pre-training 
schemes, such as BERT [7] and GPT. 
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The capabilities of LLMs have been investigated across a range of domains, including 
agriculture [21], legal predictions [22], medical [23], and financial applications [24], utilizing 
various techniques for fine-tuning and prompting LLMs such as GPT-3 and BERT. However, 
the use of LLMs in crime analysis and classification remains unexplored. In this paper, we 
provide an experimental analysis using LLMs to classify crime occurrences based on crime 
categories and information from crime incident reports such as date, time, and location. 
Additionally, we compared the performance of LLMs with that of the random forest ML 
algorithm as the baseline model for crime prediction. 

 

3. Methodology 

In this section, we present our comprehensive approach for exploration into the 
transformative potential of LLMs in crime analysis and predictive policing. Building on the 
paradigm of smart policing, we employ three state-of-the-art LLMs including BART, GPT-3, 
and GPT-4 by using fine-tuning and prompt engineering techniques such as zero-shot 
prompting and few-shot prompting.  
The effectiveness of prompting LLMs relies on the quality and comprehensiveness of prompts 
as they guide the model's behavior. While simple prompts can be good for straightforward 
cases, providing additional information about the task and the desired output format can be 
beneficial to achieve optimal performance. The use of prompts is often associated with the 
manual engineering of prompts, where we have to carefully design and evaluate each element 
of the prompt to achieve the desired results in the crime prediction task. Our investigation on 
the application of zero-shot and few-shot prompting techniques to BART and GPT models 
allows us to explore their adaptability in predicting crime categories beyond their explicit 
training data. 

 

Figure 1. Prompt template that we used for zero-shot prompting and few-shot prompting 

In the realm of ML, zero-shot learning means that a model is trained to recognize and 
classify instances that it has never seen before. This is typically achieved using semantic 
relationships and attributes to generalize knowledge from seen or known classes to unseen 
or unknown classes. Unlike traditional ML models, in which systems are trained on a dataset 
and subsequently tested on unfamiliar data within the same class, zero-shot learning 
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empowers models to predict unobserved classes, enabling systems to generalize knowledge 
and make predictions beyond their initial training data [25]. 

In the context of LLMs, zero-shot learning takes on a specific form in which text-based 
descriptions in prompts are used to enable the model to perform tasks; it was not explicitly 
trained for. This process involves employing text prompts that guide the model in 
understanding its tasks, the dataset, expected inputs or outputs, and predicting classes of 
crime incidents, leveraging pre-existing knowledge of LLMs for new fields and applications. 
Additionally, this approach enables the model to make predictions, even in scenarios where 
there is a lack of annotated data [18].  

For prompting in a zero-shot manner, we considered different templates to make the data 
understandable for LLMs. Eventually, we used a prompt template, as shown in Figure 1. Part 
(1) of the template specifies the task description for the model. Part (2) contains information 
about the dataset, such as its features and crime categories as candidate classes which should 
be listed and clarified in details for the model. Finally, part (3) provides the features of the 
new data that the model should classify. These features include the crime incident date, time, 
day of week, description, street intersection, and other related features to the location where 
the incident took place.  

Few-shot learning in LLMs involves an approach similar to zero-shot learning, which 
uses prior knowledge of the LLM. However, in a few-shot manner, the model is provided with 
a small number of examples for the defined task without updating its internal weights. Each 
example typically consists of the input data and the desired outcome, such as an English 
sentence and its corresponding French translation. To perform few-shot learning, K examples 
of input data and outcomes are provided, followed by one new input, and the model is 
expected to generate the appropriate outcome [18]. In this case, examples include the 
characteristics of a crime incident and the corresponding crime category of that incident. 

The construction of prompts is important for the effectiveness of prompt-based learning 
approaches in both zero-shot and few-shot fashions. First, a prompt template with incomplete 
text or masked slots is applied. Subsequently, the knowledge acquired by the pre-trained 
Language Model is used to predict the token that can fill in the slot, complete the text, or 
answer a question. To mitigate prompt engineering challenges, we used a class of simple 
prompts known as null prompts. As shown by previous studies, these null prompts, which 
involve simple concatenations of inputs and the masked token, demonstrate comparable 
accuracy to manually written patterns while significantly simplifying the prompt design [26]. 
The design of such prompts is similar to question answering prompts. We used the same 
template in Figure 1 for few-shot prompting LLMs, in addition to two examples of each class. 

Fine-tuning is a technique in machine learning, rooted in transfer learning, where a model 
initially developed for one task is adapted for a related task. Pre-trained models, having 
learned features from extensive datasets, significantly expedite this process, proving 
particularly beneficial when labeled data is scarce or costly to obtain. Fine-tuning finds 
applications in domain adaptation, enhancing a model's performance on target data with 
different distributions, and data augmentation, where transformations on existing data create 
new samples to improve model performance, especially with limited labeled data. Fine-tuning 
language models refer to the adaptation of a new specific task by further training a pre-
trained model on that task or its relevant dataset. This process often involves updating the 
model's weights and parameters based on a small task-specific data, while leveraging the 
general language understanding and generation capabilities learned during the pre-training 
phase. Instruction fine-tuning, also known as supervised fine-tuning, is identified as a critical 
process for acquiring instruction following the capability of LLMs and enhancing the 
capabilities and controllability of LLMs, as recognized in various real-world scenarios. This 
fine-tuning method entails refining pre-trained models on a dataset containing high-quality 
prompt-response pairs, aiming to align the model's behavior with human instructions rather 
than the typical next-word prediction objective of language models [27, 28]. 
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The construction of instruction datasets involves two main steps of data integration, in 
which (instruction, output) pairs are collected from existing annotated datasets by 
transforming text-label pairs into (instruction, output) pairs and generating outputs where 
outputs are obtained by employing LLMs, such as GPT-3.5-Turbo or GPT-4, based on manually 
collected or expanded instructions. In this paper, we fine-tuned GPT models on an instruction 
dataset based on the original dataset of crime incidents in Los Angeles and San Francisco to 
classify crime incidents based on incident category. 

For our experiemnts, we used the random forest (RF) machine learning model as the 
baseline. The RF is an ensemble learning model made up of several separate decision trees, 
each with a distinct set of attributes chosen at random. The final decision is made by the 
ensemble model by combining the output of these individual tree classifiers via a voting 
process. Random selection of split characteristics in each internal node and training sample 
selection using the bagging method [29]. One of the advantages of RF is its ability to to handle 
imbalanced datasets such as crime datasets that have an unequal number of instances across 
classes is one of its advantages. Predictive accuracy can be more meaningfully evaluated 
when the cost ratio between false positives and false negatives can be distinguished well. This 
model takes into account real-world consequences of false negatives and false positives and 
addresses the imbalances in the outcome variables, which increases the model's practical 
utility. 

4. Experimental Results 

To perform our experiments, we used two popular datasets for crime prediction, and in 
all scenarios of prompting or fine-tuning, we used the related OpenAI API for GPT models and 
the HuggingFace API to interact with the BART model. To reduce the complexity of the 
experiments, only the default settings for each model have been used to perform our 
experiments. For example, the temperature and top-p parameters of GPT models are set to 1 
while the max number of output tokens is 64.  

The first dataset includes more than 750,000 reports of crime incidents in San Francisco 
(SF) from 2018 to the present [30]. This dataset has 27 features and 41 unique incident types, 
which we used for the incident classification. We mapped these categories into a more 
manageable set of classes during the pre-processing phase. These categories serve as the 
labels on which the data should be classified. The graphical representation in Figure 2 (a) 
illustrates the uneven distribution of data across incident type categories with Property 
Crimes being the most prevalent crime.  

The second dataset contains information on crime reports in Los Angeles (LA) from 2020 
to the present [31]. This dataset includes more than 850,000 records of crime occurrences in 
LA City with 28 features. We selected 13 relative features and similar to the SF dataset, we set 
the crime categories as labels, and transformed them into a broader set of categories. Figure 
2 (b) visually represents the data distribution of the LA dataset with Property Crimes and 
Violent Crimes being the most prominent in LA. 

 
Figure 2. Data distribution; (a) Data distribution for the SF dataset, (b) Data distribution for the LA dataset 

To evaluate the performance of the model in each scenario, we split the dataset into 
training and test sets; therefore, we used 80% for training and 20% for testing. It is also 
important to note that we used the same training set to train the RF model and fine-tune GPT-
3; therefore, we had to reduce them in size according to the limitation and cost of fine-tuning 
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GPT-3 on the entire training dataset. As the datasets were imbalanced, we considered the 
weighted average of accuracy, precision, recall, and F1-score, as shown in Figures 3. 

4.1. San Francisco Dataset 

As shown in Figure 3(a), while the RF model as the baseline demonstrated strong 
performance and achieved a weighted accuracy of 82% on the SF dataset, the fine-Tuned GPT-
3 outperformed all methods with an accuracy score of 97%. This result suggests that 
leveraging the contextual understanding of the pre-trained GPT-3 model, coupled with 
domain-specific fine-tuning, significantly improves its ability to distinguish different crime 
categories. Comparatively, the RF as a traditional supervised ML model, while achieving 
relatively good performance, fell short of the fine-tuned GPT-3 model, suggesting that the 
language model that is fine-tuned for crime classification provides a more effective method 
for the SF dataset. Additionally, zero-shot prompting on GPT-3 performed closely to the RF 
model, while BART exhibits the least favorable outcomes, and zero-shot prompting on GPT-4 
outperforms both. This comparison shows that BART with its bidirectional architecture may 
offer advantages in capturing contextual dependencies, whereas GPT models, being 
autoregressive and pre-trained on extensive data, demonstrate significantly more powerful 
contextual understanding.  

When compared to zero-shot prompting, the few-shot prompting approach has 
demonstrated modest improvement. This highlights the importance of giving the model 
precise samples of the data during prompting in order to improve its accuracy when 
classifying a new crime data. Furthermore zero-shot prompting GPT-4 showed a slight 
improvement over GPT-3, which can be attributed to the architectural and pretraining phase 
enhancements achieved in GPT-4. In general, whereas GPT-4 offers some improvements 
through zero-shot and few-shot prompting, the fine-tuned GPT-3 model remains the most 
powerful model for crime classification on the SF dataset.  

 

Figure 1. Weighted Accuracy, precision, recall, and F1-score for different models; (a) Results for the SF dataset, (b) 
Results for the LA dataset 

4.2. Los Angeles Dataset 

The results for the LA dataset reveal challenges in crime prediction, with notable 
differences compared with the SF dataset. According to Figure 3(b), the RF model as the 
baseline exhibited a weighted accuracy of 57%, suggesting a substantial drop compared to its 
counterpart in SF. Additionally, the fine-tuned GPT-3 achieved a weighted accuracy of 40%, 
which indicates a significant decrease in performance compared to its performance on the SF 
dataset. This discrepancy highlights the dataset-dependent nature of both the ML and LLMs 
models and emphasizes the need for approaches specific to characteristics of crime incidents 
in each location. 
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GPT-3 showed limited effectiveness, whereas GPT-4 achieved a comparatively higher 
accuracy of 60%. BART, on the other hand, continues to exhibit less favorable outcomes. 
Similarly, few-shot prompting contributed to the enhancement of performance for both GPT 
models, but the improvements were modest in comparison to the SF dataset. This suggests 
that few-shot learning still struggles to address the complexities and imbalances of crime 
occurrences within the LA dataset. Whereas incremental changes in GPT-4 do not necessarily 
translate into a clear advantage in this specific context, it can be a notable choice for crime 
prediction for this dataset. These results emphasize the need for careful evaluation and 
consideration of model capabilities for different tasks and datasets with different features.  
Our experimental analysis's findings demonstrate that using LLMs in the realm of smart 
policing, specifically predictive policing, is feasible. While LLMs outperform traditional ML 
model in most scenarios, there are some circumstances with contradictory results, especially 
when using the LA dataset revealing that more experiments are required to build more 
practical solutions. Additionally, the comparison of our results with the related work shows 
that our Fine-Tuned GPT-3 has an impressive weighted accuracy surpassing all the other 
methods which is evidence of the potential of LLMs to outperform traditional ML techniques 
in crime classification and prediction. In the LA dataset, few-shot learning contributes to 
modest improvements but remains insufficient to overcome the complexities of crime 
occurrences in this specific urban environment.  

However, it is crucial to recognize that the choice of LLMs and efficacy of fine-tuning 
depend on the nature of the dataset. The results on the LA dataset poses unique challenges, 
which are evident in the lower overall performance scores. An unexpected decrease in 
accuracy observed in our fine-tuned GPT-3 model on the LA dataset which revelas the 
importance of model selection based on crime data. Some potential factors contributing to 
the surprising disparities in model performance could be the unique characteristics of crime 
incidents and distinct patterns in criminal activity in LA city, or an inherent bias within the 
dataset. Therefore, a deeper investigation into the underlying reasons is crucial for improving 
the generalization capabilities of LLMs across diverse urban environments. Understanding 
these local intricacies is vital for fine-tuning LLMs or ML models to ensure their effectiveness 
across different geographical contexts.  

Furthermore, ethical concerns regarding the use of such methods in predictive policing 
and their potential biases should be addressed. Potential biases in the training data can be 
utilized by these models, leading to unfair and discriminatory outcomes. It is essential to 
adopt strategies to identify and mitigate biases, ensuring that the deployment of LLMs aligns 
with the ethical standards. This includes ongoing monitoring and transparency in model 
decision making. According to the special role of law enforcement agencies and how they 
interact with societies, an interdisciplinary strategy, engaging experts from policing, 
computer science, law, and ethics, is essential to tackle the challenges and operational needs 
associated with the deployment of algorithms, especially generative AI such as LLMs in smart 
policing. This approach aims to define guidelines for transparency, comprehensibility, and 
ethical considerations. These guidelines should be crafted collaboratively, considering inputs 
from all relevant stakeholders, and should evolve with advancements in technology and 
changes in societal expectations [8]. 

 

5. Conclusion and Future Work 

The experiments in this paper demonstrate the feasibility of using LLMs in crime 
prediction, with their superiority over traditional ML models applied to datasets from SF and 
LA highlighting the capabilities of LLMs, including BART, GPT-3, and GPT-4 in understanding 
and analyzing crime data. In particular, our fine-tuned GPT-3 model exhibited superior 
performance compared to traditional models, such as RF, in the SF dataset. However, the 
performance of LLMs on the LA dataset presents challenges and disparities. Interestingly, no 
single model has emerged as a powerful solution on the LA dataset, and although few-shot 
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learning on GPT-4 exhibits marginal improvement, it still fails to comprehend the underlying 
complexities of the dataset. Although LLMs demonstrate superiority in certain contexts, their 
performance can be influenced by dataset-specific characteristics. This result emphasizes the 
dataset-dependent nature of both ML and LLMs models in addition to the importance of 
conducting experiments in various scenarios to build more practical frameworks for crime 
prediction. Therefore, future research should explore the adaptability of LLMs to different 
urban environments, considering the interplay of socioeconomic, cultural, and geographical 
factors.  

Furthermore, the discrepancy between the results underscores the complexity of 
evaluating models beyond their accuracy scores. Factors such as model interpretability, 
computational efficiency, and ethical considerations play a pivotal role in determining the 
most suitable model for real-world applications. A holistic evaluation that considers diverse 
metrics and practical implications is essential to ensure the trustworthiness and scalability 
of predictive policing models. Future endeavors in the realm of smart policing and crime 
prediction should leverage these insights, emphasizing the context-specific nature of crime 
datasets and the continual evolution required in LLMs for optimal outcomes in diverse urban 
and cultural conditions. 
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