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ABSTRACT In the face of rapidly increasing crime rates, the evolving complexity of crime data processing,
and public safety challenges, the need for more advanced policing solutions has increased leading to the
emergence of smart policing systems and predictive policing techniques. This urgency and shift toward
smart policing incorporates artificial intelligence (AI), with a specific focus on machine learning (ML) as
an essential tool for data analysis, pattern recognition, and proactive crime forecasting. Among these, the
flexibility and power of AI techniques including large language models (LLMs), as a subset of generative
AI, have increased the interest in applying them in real-world applications, such as financial, medical, legal,
and agricultural applications. However, the abilities and possibilities of adopting LLMs in applications
including crime prediction remain unexplored. This paper focuses on bridging this gap by developing a
framework based on the transformative potential of BART, GPT-3, and GPT-4, three state-of-the-art LLMs,
in the domain of smart policing, specifically, crime prediction. As a prototype, diverse methods such as zero-
shot prompting, few-shot prompting, and fine-tuning are used to comprehensively assess the performance of
these models in crime prediction based on state-of-the-art datasets from two major cities: San Francisco and
Los Angeles. The main objective is to illuminate the adaptability of LLMs and their capacity to revolutionize
crime analysis practices. Additionally, a comparative analysis of the aforementioned methods on the GPT
series model and BARTwith ML techniques is provided which shows that the GPTmodels are more suitable
than the traditional ML models for crime classification in most experimental scenarios.

INDEX TERMS Crime prediction, fine-tuning, few-shot prompting, large language models, LLM, zero-shot
prompting.

I. INTRODUCTION
The rise in urbanization and its resultant increase in urban
populations, cities face new challenges. Following this evolu-
tion, the increase in reported criminal incidents, accompanied
by the growing amount of crime data, and the multiple
challenges they pose to societies and public health and safety,
have led to a growing demand for effective crime forecasting
and prevention measures. Moreover, the main priority of
police departments is to prevent crime by increasing the
safety of cities. In this context, traditional solutions have
proven insufficient for analyzing complex crime data and
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providing timely insights into potential incidents [1], [2].
Smart policing has emerged in this landscape in response
to the urgent need for innovative solutions in law enforce-
ment [3], [4], and it offers a framework for smart technologies
powered by AI techniques such as data analysis and pattern
recognition enabling authorities to identify emerging criminal
patterns and trends effectively. These tools can potentially
speed up data processing and analysis for law enforcement
while mitigating the influence of human biases [5].
With the advancements in smart policing in recent years,

most police departments use electronic systems for crime
reporting, which have replaced traditional paper-based crime
reports. Additionally, they commonly use AI tools for
different purposes. Each of these technologies is used for
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various purposes including crime information extraction, traf-
fic management, facial recognition, weapon detection, and
monitoring criminal activity through surveillance cameras.
[6], [7], [8] Furthermore, predictive policing has been intro-
duced as a research subfield of smart policing, which involves
using a range of technologies, such as crime documentation,
predictive crime maps, advanced computer software, and
artificial intelligence algorithms. Predictive policing enables
police to use predictive analytics, forecast the occurrence of
future crimes, and identify potential criminals and victims.
Predictive policing leverages ML algorithms and statistical
analysis methods to forecast criminal activities, including
key details such as location, date, time, crime type, and
potential victims, by analyzing both historical and real-time
crime data [9]. The underlying idea of predictive policing
is rooted in the theory that crimes do not occur randomly;
instead, they follow patterns influenced by local environmen-
tal conditions and situational decision-making of potential
victims [10].

LLMs are a class of generative AI models based on
deep learning specifically designed for comprehending and
generating human language. These models are characterized
by their enormous size, often containing hundreds of millions
or even billions of parameters, which allows them to perform
a wide range of natural language understanding and text
generation tasks [11]. For crime prediction tasks, an ML
model can be trained on inputs to output labels from a fixed
set of classes. However, recent advances in LLMs, such as
BERT [12] andGPT-3 [11], have introduced a novel approach
for classification known as prompting. In prompting, there
is typically no need for further training; instead, the model
input contains a task-specific text called a prompt. Prompt
engineering involves creating, evaluating, and recommending
prompts for natural language processing tasks, enabling
professionals to use LLMs for tasks such as data annotation,
classification, and question-answering. Another way to take
advantage of powerful LLMs is to adapt them for specific
tasks by fine-tuning them.

Despite their proven efficacy, using LLMs in smart
policing, particularly for predictive policing applications,
remains relatively unexplored. This paper addresses this gap
by investigating the potential adaptability of LLMs within
the domain of smart policing, with a specific focus on
predictive policing using classification and prediction. The
proposed framework extends the work in [13] and utilizes
prompt engineering and fine-tuning methods of LLMs such
as BART and GPT models. For the prototype, two state-
of-the-art historical crime datasets from San Francisco and
Los Angeles were used for crime prediction and classification
tasks. In addition, a comparative analysis between LLMs
and classical ML models in crime prediction on the same
datasets is provided. The findings offer valuable insights
into the practical implementation of LLMs in predictive
policing. Through this research, we aim to shed light on the
potential of LLMs to revolutionize crime analysis practices
and enhance the efficacy of predictive policing techniques.

To this end, the remainder of this paper is organized as
follows. Section II provides an overview of related work on
crime classification and prediction, along with background
information on LLMs. Section III clarifies the prompting and
fine-tuning methods used. Section IV explains the structure
of the datasets used in the experiments. Section V presents
the results of our experiments, and Section VI details the
discussion and comparison of the methods used. Section VII
presents the limitations, and finally, Section VIII concludes
the paper and highlights potential avenues for future work.

II. RELATED WORK
The advent of predictive policing, which is part of smart
policing, has been helpful in addressing crime-related
challenges. Predictive policing relies on various techniques,
including mapping techniques, ML, and NLP [14]. These
techniques are employed to classify crime incidents based
on their characteristics, predict the likelihood of crimes in
specific locations, or identify individuals who are most likely
to engage in criminal activities [6].

Mapping techniques form the foundation of crime predic-
tion by enabling the identification of crime hotspots. These
techniques include point mapping, thematic mapping of
geographic areas, spatial ellipses, grid thematic mapping, and
kernel density estimation (KDE) [15]. KDE is widely used
for visualizing crime data because it effectively identifies
hotspots without being constrained by geometric shapes such
as ellipses [16].

ML has become a valuable tool for crime prediction
tasks, such as identifying crime hotspots and predicting
crime categories. Various ML techniques, including support
vector machines, naïve Bayes, artificial neural networks,
K-nearest neighbors, decision trees, and random forests, have
been employed in this context [17]. A study provides a
comprehensive analysis of ML methods for crime prediction
using crime datasets from Chicago and Los Angeles. This
study suggests that XGBoost is the best choice for crime
prediction with an accuracy score of 94% for the Chicago
dataset and 88% for the Los Angeles dataset [18]. In another
study, naïve Bayes and back propagation neural networks
were used to identify and predict crime categories based
on socioeconomic datasets related to various locations in
the United States. Their experiments showed that naïve
Bayes outperformed neural networks with an accuracy of
94.08% [19], whereas, in a similar study on crime category
prediction in the United States, decision trees outperformed
naïve Bayes [20]. Decision tree is a popular and powerful
ML algorithm in this context, as shown in [21] and [22], who
compared decision tree j48 with a support vector machine,
naïve Bayes, and neural network. The authors in [23] also
suggested crime category prediction in specific geographical
areas using naïve Bayes and decision tree based on historical
incident data sourced from the Chicago Police Department’s
CLEAR system, both of which were applied to the top nine
selected features from the dataset, and as a result, the decision
tree outperformed naïve Bayes.
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Clustering methods, such as K-means, have also been
useful for identifying regions with high crime rates and
predicting future criminal activities [24]. Additionally,
regression methods, including Negative Binomial and Pois-
son Regression, have shown promise in crime prediction
based on time-series data [25].
Deep learning methods, such as Convolutional Neural

Networks (CNNs), Recurrent Neural Networks (RNNs), and
Generative Adversarial Networks, have gained prominence
in smart policing. These deep learning methods are used
for criminal image classification, handling pooled cross-
sectional data, and enhancing security [26], [27]. For
instance, CNNs extract essential features frommaps, whereas
RNNs are useful for analyzing temporal structures within the
data [28]. In a study that combined RNN and CNN to predict
crime categories, the feedforward neural network achieved
an accuracy of 71.3%, CNN achieved an accuracy of 72.7%,
RNN achieved an accuracy of 74.1%, and their proposed
method improved the accuracy by 1.5% [29].
Studies have also explored unsupervised learning and

crime linkage using NLP. Crime linkage aims to identify
crimes committed by the same individuals, whereas unsu-
pervised NLP techniques have been employed to cluster
crimes and inform policing strategies [30]. Moreover, there
is emerging interest in utilizing NLP to analyze social media
data, such as Twitter, to predict crime rates in cities [31].
In recent years, LLMs, such as GPT series models,

have attracted interest and have drawn attention from
law enforcement agencies for their potential use in smart
policing. According to previous studies, while LLMs hold
promise for supporting policing through NLP, ethical con-
cerns must be addressed [14]. The selection of BART,
GPT-3, and GPT-4 for our study was motivated by their
distinct architectures and capabilities, which contributed
to the comprehensive exploration of LLMs. GPT models
offer a powerful contextual understanding, making them
suitable candidates for tasks requiring the comprehension
of textual information. GPT-3, or the ‘‘Generative Pre-
trained Transformer 3,’’ is a cutting-edge model belonging
to the transformer architecture family. With an impressive
scale of 175 billion parameters, it utilizes the same model
structure as GPT-2, featuring alternating dense and sparse
attention layers. Its extensive pre-training on diverse Internet
text data enables it to effectively generalize across various
domains, making it proficient in tasks ranging from article
writing to question answering and code creation [11]. GPT-4
was introduced in March 2023 and significantly advanced
by incorporating multimodal signal processing with text
input. GPT-4 prioritizes safety in development practices,
addressing concerns such as hallucinations, privacy, and
overreliance with the introduction of intervention strategies
such as red teaming. The model is built on a deep learning
architecture based on the concept of predictable scaling,
ensuring accurate performance forecasting with minimal
computation during training and improved overall efficiency
and predictability [32]. By including GPT-4 in our study,

we aimed to assess the impact of model advancements on
crime prediction performance in comparison with the GPT-3
model.

BART, short for bidirectional and auto-regressive trans-
formers, is another LLM with a denoising autoencoder
designed for pre-training sequence-to-sequence models [33].
BART employs a standard transformer-based neural machine
translation architecture that is powerful in capturing con-
textual dependencies in textual data. Despite its simplicity,
BART’s design draws inspiration from and extends the
capabilities of other prominent pre-training schemes, such as
BERT [12] and GPT.
The capabilities of LLMs have been investigated across

a range of domains, including agriculture [34], legal pre-
dictions [35], [36], [37], medical [38], [39] and financial
applications [40], [41], utilizing various techniques for
fine-tuning and prompting LLMs such as GPT-3 and BERT.
However, the integration of LLM into smart policing remains
unexplored. In this paper, we provide guidance for the design
and development of an LLM-assisted framework in smart
policing, and as a prototype, we perform an experimental
analysis of using LLMs to classify crime occurrences based
on crime categories and information from crime incident
reports such as date, time, and location. Additionally,
we compared the performance of the LLMs with that of the
random forest ML algorithm as the baseline model for crime
prediction.

III. METHODOLOGY
This section describes the architecture and operational
mechanism of a novel framework designed to enhance smart
policing through the application of LLMs to crime prediction
and classification tasks. As depicted in Figure 1, this frame-
work, systematically integrates LLMs into the predictive
analytics domain, focusing on the critical steps required to
adapt these models for smart policing applications, including
but not limited to crime prediction.

The first step is the meticulous selection and preparation
of a data source according to the defined task (e.g. crime
prediction), thereby ensuring that the foundational data are
both relevant and optimized for processing. Data sources
can be datasets of information extracted from police reports
in local law enforcement agencies in different areas or
cities. After applying pre-processing techniques, including
addressing missing values through imputation or dropping,
prompt engineering is used to transform the original historical
crime dataset into a human-language-understandable format;
therefore, each data point is a description of a crime incident
in natural language. Subsequent steps involve the creation
of an instruction dataset derived from the original dataset,
to serve as the basis for fine-tuning LLMs. Additionally, the
interaction with LLMs is conducted via prompt engineering
through their Application Programming Interface (API),
which is a critical process that enables the customization of
model responses to align with the specific needs of a crime
prediction system.
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FIGURE 1. Framework architecture for developing LLM-assisted tools for smart policing.

Upon gathering the results from interactions with LLMs,
a comprehensive performance evaluation was performed.
This evaluation process is crucial for identifying the most
effective method for crime classification and prediction and
integrating the crime prediction tool into smart policing
systems.

In this paper, a spatiotemporal crime prediction tool
based on LLMs was designed and tested with two sets of
historical crime data as prototypes. As shown in Figure 2,
the tool, indicated in yellow, can operate within a broader
smart policing system with diverse data types for inputs
from different sources to generate more accurate predictions
and actionable insights into criminal patterns and predictive

analytics for law enforcement use. However, the investigation
of other modules and their integration into a single system is
left for future work.

Users such as police officers can interact with smart
policing systems by entering the required input for each
module. Using data visualization tools, including dashboards
and heat maps alongside the crime prediction module, they
can understand what type of crime activities are more likely
to happen in specific locations and times. Therefore, they
can decide how to allocate security resources or prioritize
their patrolling in different locations. The system architecture
allows for flexible deployment on either cloud-based services
or local devices, depending on the specific requirements of
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FIGURE 2. Integration of an LLM-Assisted framework (indicated by yellow) into a smart policing system and how users can interact with them.

the policing context and available computational resources.
Cloud deployment, for instance, enables real-time updates
with new data, thereby enhancing the system’s effectiveness
in identifying new crime trends.

A. PROMPT ENGINEERING AND FINE-TUNING
In this paper, prompting and fine-tuning methods were
used to interact with LLMs, such as GPT models and
BART, to analyze their abilities in crime classification and
prediction tasks. Practically, this was done through the
OpenAIAPI for GPTmodels and theHuggingFace repository
pipeline function for BART with their default parameters
settings, and fine-tuning through instruction tuning was
used to adopt GPT models into the domain. Our choice
of GPT models and BART is driven by their power in
downstream tasks and specific architectures. Additionally,
as previously mentioned, these models have been exten-
sively studied and considered for adoption across diverse
applications, highlighting their versatility and potential
efficiency.

The effectiveness of prompting LLMs is tied to the quality
and comprehensiveness of prompts as they guide the model’s
predictions. Although simple prompts can be efficient for
straightforward cases, providing additional information about
the task and desired output format can be beneficial for
achieving optimal performance. The use of prompts is often
associated with the manual engineering of prompts, in which
we must carefully design and evaluate each element of
the prompt to achieve the desired results in the crime
prediction task. Our investigation of the application of
zero-shot and few-shot prompting techniques to the BART
and GPT models allowed us to explore their adaptability
in predicting crime categories beyond their explicit training
data without limiting their prior knowledge to a specific
domain.

In the realm ofML, zero-shot learning implies that a model
is trained to recognize and classify instances that have never
been seen before. This is typically achieved by using semantic
relationships and attributes to generalize knowledge from
seen or known classes to unseen or unknown classes. Unlike

VOLUME 12, 2024 74919



P. Sarzaeim et al.: Framework for LLM-Assisted Smart Policing System

traditional ML models, in which systems are trained on a
dataset and subsequently tested on unfamiliar data within the
same class, zero-shot learning empowers models to predict
unobserved classes, thereby enabling systems to generalize
knowledge and make predictions beyond their initial training
data [42], [43].

In the context of LLMs, zero-shot learning takes on a
specific form in which text-based descriptions in prompts are
used to enable the model to perform tasks; it is not explicitly
trained. This process involves employing text prompts that
guide the model in understanding its tasks, dataset, and
expected inputs or outputs, and predicting classes of crime
incidents, leveraging pre-existing knowledge of LLMs for
new fields and applications. Additionally, this approach
enables the model to make predictions, even in scenarios
where there is a lack of annotated data [44].

For prompting in a zero-shot manner, we considered
different templates to make the data understandable for LLM.
First, a prompt template with incomplete text or masked
slots is applied. Subsequently, the knowledge acquired by the
pre-trained language model is used to predict the token that
can fill in the slot, complete the text, or answer a question.
To mitigate prompt engineering challenges, we used a class
of simple prompts known as null prompts. As shown in
previous studies, these null prompts, which involve simple
concatenations of inputs and the masked token, demonstrate
comparable accuracy to manually written patterns while
significantly simplifying the prompt design [45], [46]. The
design of such prompts is similar to that of question-answer
prompts. We assessed the outputs generated by the LLMs by
focusing on their relevance, accuracy, and complementarity
with our objectives. This iterative evaluation process was
continued, improving the prompt, until the LLMs consistently
produced results that aligned closely with our predefined
standards and expectations of accuracy and contextual
relevance. Finally, we used the prompt template shown in
Figure 3. Part (1) of the template specifies the task description
of the model. Part (2) contains information regarding the
dataset, such as its features and label classes. Finally, part (3)
provides the features of the new data that the model should
classify.

Few-shot learning in LLMs involves an approach similar
to zero-shot learning that uses prior knowledge of the LLM.
However, in a few-shot manner, the model is provided with
a small number of examples for the defined task without
updating its internal weights. Each example typically consists
of the input data and the desired outcome, such as an
English sentence and its corresponding French translation.
To perform few-shot prompting, K examples of input data
and outcomes are provided, followed by a new input, and the
model is expected to generate an appropriate outcome [11].
We used the same template as in Figure 3 for few-shot
prompting LLMs, in addition to two examples of each
class. In this case, examples include the characteristics of a
crime incident and the corresponding crime category of that
incident.

FIGURE 3. Prompt template that we used for zero-shot prompting and
few-shot prompting.

Fine-tuning finds applications in domain adaptation,
enhancing a model’s performance on target data with
different distributions, and data augmentation, where trans-
formation of existing data creates new samples to improve
model performance, especially with limited labeled data.
Fine-tuning language models as depicted in Figure 4, refers
to the adaptation of a new specific task by further training
a pre-trained model on that task or its relevant dataset.
Istruction fine-tuning, also known as supervised fine-tuning
involves updating the model’s weights and parameters based
on a small task-specific dataset while leveraging the general
language understanding and generation capabilities learned
during the pre-training phase [47]. This method is identi-
fied as a process for acquiring the instructions-following
capability of LLMs and enhancing the controllability of
LLMs, as recognized in various real-world scenarios rather
than the typical next-word prediction objective of language
models [48], [49].

The construction of a domain-specific dataset or instruc-
tion dataset involves two main steps of data integration,
in which (instruction, output) pairs are collected from
existing annotated datasets by transforming text-label pairs
into (instruction, output) pairs and generating outputs
where outputs are obtained by employing LLMs, such as
GPT-3.5-Turbo or GPT-4, based on manually collected or
expanded instructions.

The pre-trained model’s parameters serve as the starting
point of the fine-tuning. These include weights and biases
that the model has adjusted during its initial training phase
on the large dataset. The purpose of fine-tuning is to adjust
these parameters slightly to suit the new task without losing
the generalized understanding the model has acquired. Then,
the model is then trained or fine-tuned on the task-specific
dataset. This training process does not start from scratch but
rather adjusts the pre-trained parameters. The learning rate
used during fine-tuning is typically much lower than that
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FIGURE 4. The Fine-tuning process through instruction tuning of LLMs.

used in the initial training phase to ensure that the pre-learned
patterns are not drastically altered. The power of instruction
fine-tuning lies in its ability to refine the model’s responses,
ensuring they are not only accurate but also contextually
relevant and aligned with the defined task of crime prediction
enabling these advanced models to interpret and respond to
complex crime data.

In this paper, we fine-tuned the GPT-3.5 using the OpenAI
platform’s instruction fine-tuning tool which uses computa-
tional frameworks to manage the complexities of backpropa-
gation, gradient descent, and parameter updates. For this pur-
pose, we created an instruction dataset based on the original
dataset of crime incidents in Los Angeles and San Francisco
to classify crime incidents based on incident categories.

B. ML MODELS
To compare the ability of the LLMs and ML models in
classification and prediction tasks, we considered the random
forest (RF) and XGBoost models as the baselines of our
experiments. RF is an ensemble learning model comprising
multiple decision trees, each constructed independently
with a unique set of randomly selected features. The
ensemble model aggregates the results of these individual
tree classifiers through a voting mechanism to make the final
decision. The randomness in RF has two key aspects: random
selection of training samples using the bagging algorithm and
random choice of split attributes in each internal node [50].
RF has the advantage of handling imbalanced datasets where
the number of instances in different classes is uneven. The
ability to differentiate the cost ratio between false negatives

and false positives allows for a more meaningful evaluation
of predictive accuracy. This approach ensures that the model
considers the real-world consequences of false negatives
and false positives, and addresses the imbalance of our
datasets in the outcome variable, which increases its practical
utility.

XGBoost, also known as Extreme Gradient Boosting,
is another ensemble learning model that represents an
advanced ML algorithm within the gradient boosting family
specifically designed for exceptional model performance
and computational efficiency. XGBoost sequentially trains
decision trees on the training data, and iteratively adds new
trees to adjust the errors made by existing ones. The algorithm
optimizes an objective function that combines a loss term,
measuring prediction errors, and a regularization term to
control model complexity and prevent overfitting. XGBoost
uses a second-order Taylor expansion to approximate the loss
function and determines the optimal tree structure using a
greedy algorithm. Notable advantages of XGBoost include
internal handling of missing data, elimination of the need
for imputation, high computational speed through parallel
processing, and robustness against overfitting. The versatility
and ability of the algorithm to deliver high prediction
accuracy make it a preferred choice among researchers and
practitioners in the field of ML [51], [52].

IV. DATA COLLECTION
To perform our experiments, we used two popular datasets
in the context of crime prediction: crime data from San
Francisco (SF) and Los Angeles (LA). To facilitate our
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TABLE 1. Datasets’ features and description.

TABLE 2. Crime incident categories.

analysis, we meticulously pre-processed the data to address
the missing values. The features used in our experiments
are listed in Table 1. In this table, the features, along with
their descriptions and corresponding number of null values,
provided essential insights into the structure of the dataset.
For instance, the ‘‘Vict Sex’’ feature in the LA dataset
indicates the gender of the victim, while ‘‘Weapon Desc’’
details the type of weapon used in the crime. We observed
a substantial number of null values in the ‘‘Vict Descent’’
feature, indicating unknown or unreported ethnicities of
victims. We attempted to handle null values by dropping data
or replacing them with sufficient descriptions. For example,
for the ‘‘Weapon Desc’’ feature, we assumed that no weapons
were used in crime occurrence.

FIGURE 5. Data distribution; (a) Data distribution for the SF dataset,
(b) Data distribution for the LA dataset.

The first dataset included more than 750,000 reports of
crime incidents in SF City from 2018 to the present collected
from [53]. This dataset has 27 features and 41 unique
incident types that were used for the incident classification.
We selected ten features and mapped the incident categories
into a more manageable set of classes during the pre-
processing phase. The transformation is detailed in Table 2,
and the graphical representation in Figure 5 (a) illustrates the
uneven distribution of data across incident type categories
with Property Crimes being the most prevalent crime, indi-
cating the dataset’s imbalance distribution. Understanding
data distribution is crucial for comprehending a dataset’s
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characteristics, imbalances, and potential challenges in crime
classification.

The second dataset contains information on crime reports
in LA dating back to 2020 [54]. This dataset includes
more than 850,000 records of crime occurrences in LA
City with 28 features. We selected 12 features, as shown
in Table 1, and set crime type as the label. Similar to the
SF dataset, we transformed the crime types into a broader
set of categories, as specified in Table 2. Figure 5 (b) also
visually represents the data distribution of the LA dataset.
The distribution shows the prevalence of different crime
categories, with Property Crimes and Violent Crimes being
the most prominent. This comprehensive exploration of the
features and distribution lays the foundation for subsequent
analysis and model evaluation.

V. EXPERIMENTAL RESULTS
In this section, we provide a comprehensive experimental
analysis that applies both LLMs, including the BART and
GPT models, and traditional ML models, namely RF and
XGBoost, to two crime datasets from San Francisco (SF)
and Los Angeles (LA). Before the analysis, these datasets
were pre-processed to align with the requirements of each
model, focusing on crime prediction and classification tasks.
To evaluate the performance of each model, the datasets were
partitioned into training and test sets, allocating 80% of the
data for training and the remaining 20% for testing. It is
important to note that the same subsets of data were utilized
to train the ML models and fine-tune the GPT-3 model.
Given the constraints related to the size and computational
costs associated with fine-tuning GPT-3 across the entire
training dataset, a reduction in the size of the training set was
considered.

Due to the imbalanced nature of the datasets, the evalu-
ation metrics included the weighted averages of accuracy,
precision, recall, and F1-score. These metrics were calculated
to assess the model performance, effectively accounting
for disparities in the class distribution. In this context,
precision measures the proportion of correctly predicted
positive observations to the total predicted positives for a
specific crime category. High precision for a specific crime
type suggests that the model can effectively identify crime
types without confusing them with others. On the other hand,
recall measures the proportion of actual positives correctly
identified by the model for a specific crime category. High
recall indicates that the model can identify most actual
instances of a specific crime type. Class imbalance is a
common issue in crime datasets in which some crime types
are more frequent than others. Therefore, precision and
recall were used to highlight how well a model performed
for both majority or frequent crime and minority or rare
crime categories, guiding efforts to improve model sensitivity
and specificity across the board. Additionally, the F1-score
considers the balance between precision and recall and is
particularly useful in scenarios where both false positives
and false negatives carry significant consequences, as is often

seen in crime prediction and classification tasks. The results
of these evaluations are graphically represented in Figures 6
and 7, and a detailed breakdown of the performance metrics
for both the minority and majority classes is presented in
Table 3.

A. SAN FRANCISCO DATASET
The results obtained from the experiments for the crime
prediction task on the SF dataset reveal significant insights
into the performance of each approach. As shown in
Figures 6(a) and 7(a), the baseline ML models, RF and
XGBoost, exhibited good performance, achieving weighted
accuracies of 82% and 94%, respectively. Comparatively, the
Fine-tunedGPT-3model surpassed these benchmarks with an
accuracy score and F1-score of 97%. Although XGBoost as a
supervised ML algorithm demonstrated robust performance,
it did not reach the benchmark set by the fine-tuned GPT-
3 model, highlighting the unique strengths of LLMs that
have undergone fine-tuning for specific classification tasks.
The good performance of GPT-3 can be attributed to its
ability to leverage vast amounts of pre-trained knowledge
and adapt this understanding to crime classification and
prediction within the SF dataset. This suggests that for tasks
involving complex pattern recognition and classification
within substantial and diverse data sets, fine-tuned language
models offer a more effective approach than traditional ML
models.

An interesting observation is that zero-shot prompting on
GPT-3 demonstrated performance closely aligned with that
of the RF model. In contrast, BART showed less favorable
results, whereas zero-shot prompting on GPT-4 surpassed
both. This distinction underscores the inherent strengths of
GPT models, which, as auto-regressive language models
pre-trained on vast corpora, exhibit a significantly better
contextual understanding relative to BART’s bidirectional
architecture, which primarily focuses on capturing contextual
dependencies. As shown in Figure 6, zero-shot prompting
with BART results in a high precision rate which signifies
that when BART classifies an incident under a certain
crime category, it is highly likely to be correct. This is
evidence of the model’s effectiveness in correctly interpreting
the features that define each crime category, minimizing
false positives when incidents are wrongly labeled under a
category. Conversely, the low recall of zero-shot prompting
BART highlights a limitation in the model’s capability to
identify all actual instances of a given crime category, where
BART misses a significant number of real occurrences of
certain crimes, failing to label them as such.

Moreover, few-shot prompting improved the performance
of both the GPT-3 and GPT-4 models achieving notable
improvements in precision, recall, and F1-score. These
results demonstrate the critical role of incorporating specific
examples of data during training with an equal number of
examples for each class, thereby improving the model’s
performance and accurately classifying frequent and rare
instances. Additionally, the observed slight increase in the
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FIGURE 6. Weighted accuracy for different methods; (a) Results for the SF dataset, (b) Results for the LA dataset.

FIGURE 7. Comparison of methods based on precision, recall, and F1-score; (a) Results for the SF dataset, (b) Results for the LA dataset.

weighted average of accuracy and the F1-score suggests that
few-shot prompting aids in the model’s overall generalization
capabilities.

According to the evaluation results presented in Table 3,
the zero-shot prompting method employed by the GPT-3
model showed robust performance on the majority class
for the SF dataset, as evidenced by the high precision,
recall, and F1-score metrics. However, this model showed a
notable deficiency in identifying instances of the minority
class, as indicated by the zero predictive accuracy for
this group. This disparity highlights the limitations of the
model in generalizing to minority classes in the absence of
explicit training examples, highlighting a critical challenge

in deploying zero-shot prompting methods for balanced
classification tasks. In contrast, zero-shot prompting on
GPT-4 significantly outperformed GPT-3 and other methods
in both minority and majority class predictions for the
SF dataset, achieving perfect scores. This illustrates GPT-
4’s advanced ability to leverage its extensive pre-training
for a more effective generalization across diverse class
distributions, even without providing examples of the training
dataset and fine-tuning.

In both zero-shot and few-shot scenarios, GPT-4 showed
a marginal accuracy enhancement over GPT-3. Despite
achieving perfect scores in precision, recall, and F1-score
for the minority class, GPT-4 displayed a minor decline
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in performance metrics for the majority class. This pattern
suggests that, while GPT-4 can identify minority class
instances with high accuracy, it may not generalize across
class distributions as effectively as GPT-3, particularly for
the majority class. Both GPT-3 and GPT-4 showed high
performance in few-shot scenarios, demonstrating a relatively
high precision, recall, and F1-score for both minority and
majority classes. It is interesting that while GPT-4 performs
better in classifying minority and majority classes than
GPT-3, its performance in identifying these classes slightly
decreased in a few-shot manner according to its precision.
This result suggests that enhancements in GPT-4 may not
substantially affect the overall model generalization for
the SF dataset. In general, although GPT-4 offers some
improvements through zero-shot and few-shot prompting, the
fine-tunedGPT-3model remains themost powerful model for
crime classification on the SF dataset.

B. LOS ANGELES DATASET
The analysis of the LA dataset revealed distinct challenges in
crime prediction, presenting notable performance disparities
when compared with the SF dataset. According to the results
shown in Figure 6 (b) and Figure 7 (b), the XGBoost
and RF models as baselines exhibit weighted accuracies of
53% and 57% with F1-score of 53% and 56% respectively.
This represents a considerable decline in their effectiveness
relative to their performance in the SF context. Moreover,
the fine-tuned GPT-3 model exhibited a weighted accuracy
of 40%, indicating a pronounced decrease compared to its
counterpart within the SF dataset. Such disparities underscore
the dataset-specific performance of both ML models and
LLMs, and the necessity for analytical approaches that
meticulously consider the unique attributes of crime incidents
inherent to each geographical location.

Zero-shot prompting on GPT-3 and GPT-4 demonstrated
varying performance on the LA dataset. GPT-3 showed lim-
ited effectiveness, whereas GPT-4 achieved a comparatively
higher accuracy of 60%. This variance in performance can
be attributed to GPT-4’s more advanced architecture and
larger training corpus, which likely provides it with better
contextual understanding and adaptability to new datasets.
Consistent with earlier observations, BART displayed less
favorable outcomes with significantly high precision but low
recall, possibly because of its bidirectional architecture’s
limitations in adapting to the specific linguistic and structural
features of crime data without direct examples.

Similar to the results for the SF dataset, few-shot
prompting contributed to the performance enhancement for
both GPTmodels on the LA dataset as it achieved an accuracy
of 43% for GPT-3 and 68% for GPT-4. However, it still
lags behind. This suggests that few-shot prompting is still
not sufficient to address the complexities and imbalances of
crime occurrences within the LA dataset, but there are still
improvements compared to the RF and XGBoost models as
baselines. This suggests that the LA dataset poses unique
challenges, potentially related to its inherent characteristics

such as class distribution, complexity of crime descriptions,
or other contextual factors not as prevalent in the SF dataset.
Despite a few explicit examples through few-shot prompting,
the complexity and possibly greater heterogeneity of the LA
dataset may limit the effectiveness of this approach.

Analyzing the performance of methods in distinguishing
majority and minority classes according to the results in
Table 3, zero-shot prompting on GPT-3 and GPT-4 exhibited
limited effectiveness in predicting minority class instances,
with both models failing to identify any instances correctly,
as indicated by their zero precision, recall, and F1-score.
In contrast, zero-shot GPT-3 slightly outperformed GPT-4
in majority class predictions, achieving a higher F1-score of
64% compared to GPT-4’s 60%, which contradicts earlier
expectations based on their performance on the SF dataset.
This outcome underscores the challenges posed by the LA
dataset, which may include more complex or varied crime
descriptions that are difficult to generalize from pre-trained
knowledge without explicit examples.

Few-shot prompting offeredmodest performance improve-
ments in identifying minority and majority class predictions
for both GPT models, with GPT-4 showing a slight edge
over GPT-3 in terms of F1-score. However, the enhancements
in minority class prediction were not as significant as those
observed in the SF dataset. It is noteworthy that BART and
traditional ML models such as RF and XGBoost also faced
challenges, with RF and XGBoost unable to identify minority
class instances accurately, as shown by their zero values in
precision, recall, and F1-score for the minority class. These
results highlight the dataset-dependent nature of model per-
formance, underscoring the complexities of crime prediction
tasks and the necessity for adaptable, context-awaremodeling
approaches to tackle the specific characteristics of crime
incidents within diverse urban settings.

Surprisingly, the fine-tuned GPT-3 model experienced a
significant drop in performance compared to its results on
the SF dataset, achieving a weighted accuracy of 40% and
F1-score of 48% with a substantial decrease in recall as
shown in Figure 6 (b) and Figure 7 (b). Despite experiencing
a relative decrease in accuracy, GPT-4 has emerged as a
noteworthy option for crime prediction within the LA dataset.
However, the marginal improvements introduced by GPT-4
do not unequivocally establish it as a superior choice for this
task.

The challenges faced by GPT-4 and fine-tuned GPT-
3 in generalizing to the minority class within the LA
dataset highlight the need for enhanced strategies capable
of navigating the diverse and complex nature of urban
environments. This suggests the crucial role of model selec-
tion, emphasizing that advancements in model architecture
require careful consideration to effectively leverage their
full potential. The observed performance variations between
GPT-3 and GPT-4 in the LA dataset suggest that a deeper
understanding of each model’s strengths and limitations
is essential for optimizing crime prediction efforts across
different geographical settings.
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TABLE 3. Class prediction evaluation results for minority and majority classes.

FIGURE 8. Comparison of oss ML methods including multilayer
perceptron, K-nearest neighbors, logistic regression, and XGBoost in
related work [18] and LLMs in our work.

VI. DISCUSSION
The experimental results show that LLMs can be used
in smart policing specifically, crime prediction and clas-
sification. Although the performance of LLMs in crime
classification tasks is better than traditional ML in most
scenarios, some cases, particularly on the LA dataset, show
controversial results, revealing that more experiments in
different scenarios are required to build more practical tools
and services. Additionally, by comparing our models with a
broader spectrum of traditional ML methods, including mul-
tilayer perceptron, K-nearest neighbors, logistic regression,
and XGBoost from related studies, we attempted to shed
light on the relative strengths and limitations of various crime
prediction approaches. The evaluation using the weighted
accuracy scores in Figure 8 reveals performance variations
across the different methods and datasets. To evaluate

the results from the SF dataset, we compared it with
the models’ performance on the Chicago dataset, as the
overall performance of the models reached high accuracy
on this dataset. This comparison shows that our Fine-
Tuned GPT-3 has an impressive weighted accuracy of 97%,
surpassing all the other ML models or LLM on SF and
LA datasets in addition to the ML models’ performance
on the Chicago dataset from the past. This is evidence
of the potential of LLMs, particularly when fine-tuned for
crime classification tasks. However, it is crucial to recognize
that the choice of LLMs and the efficacy of fine-tuning
depend on the specific characteristics of the dataset. The
LA dataset poses unique challenges, as is evident from the
lower overall performance scores. While traditional methods,
such as K-nearest Neighbors, show higher accuracy in this
context, LLMs demonstrate the feasibility of leveraging
large-scale pre-trained models for more accurate crime
prediction. It is also noteworthy that zero-shot learning,
in which models make predictions for classes not observed
during training, provides an interesting perspective on the
adaptability of language models. In the SF dataset, the
zero-shot GPT-3 and GPT-4 performed reasonably well,
indicating the capacity of these models to generalize to
new crime categories without further training. Few-shot
prompting enhances the performance across all models,
underscoring the importance of providing specific examples
during training to improve the model’s ability to classify
diverse instances. In the LA dataset, few-shot prompting
GPT 4 contributes to significant improvements in comparison
to ML models but remains insufficient to overcome the
complexities of crime occurrences in this specific urban
environment.

One notable point of discussion arises from the unexpected
decrease in the accuracy observed in our Fine-Tuned GPT-3
model on the LA dataset. Although related studies have
reported a high accuracy of 89% with the K-nearest neighbor
algorithm, our GPT-3 model achieved a lower accuracy
of 40%. Some potential factors contributing to the surprising
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disparities in model performance could be the unique
characteristics of crime incidents and distinct patterns in
criminal activity in LA city, or an inherent bias within
the dataset. Therefore, a deeper investigation of the under-
lying reasons is crucial for improving the generalization
capabilities of LLMs across diverse urban environments.
Understanding these local intricacies is vital for fine-tuning
LLMs or ML models to ensure their effectiveness across
different geographical contexts. Another interesting observa-
tion is the comparison of the performance of XGBoost in
previous studies with the results of our work, as illustrated
in Figure 7. This highlights the influence of various
parameters on the performance of AI models and the
importance of considering model implementation when con-
ducting comparisons, particularly in terms of accuracy and
F1-score.

Additionally, because of the performance results of the
models in identifying frequent and rare crime incidents and
the diversity of crime types and their unique characteristics,
customizing LLMs for specific categories of crime could
improve prediction accuracy. Developing models for partic-
ular crime incident types, such as property crimes, violent
crimes, or malicious mischief, could allow for more accurate
and effective predictions.

Furthermore, ethical concerns regarding integrating such
methods into predictive policing and the potential biases
should be addressed. The potential of these technologies to
enhance public safety and operational efficiency is consider-
able; however, the consequences of their deployment warrant
thorough ethical examination. A primary ethical concern lies
in the risk of perpetuating biases present in the historical
crime data. AI models, including LLMs, are only as unbiased
as the data they are trained on. Given the documented
disparities in policing and judicial processes, there is a
real risk that these technologies could reinforce existing
prejudices, leading to discriminatory practices against some
communities. Additionally, collecting vast amounts of data,
including personal information, and its sharing through
interactions with an LLM raises concerns about individuals’
rights to privacy. This concern can be addressed using LLMs
that are accessible through personal computers or local edges
instead of cloud-based LLMs such as GPT models. Police
departments and law enforcement agencies should make
this choice based on the regulations and the computational
resources of their local devices.

Another ethical concern is accountability and transparency.
Decisions made by LLMs, if not explainable, can undermine
trust in law enforcement agencies. Any AI system used in
policing must be accompanied by mechanisms that ensure
decisions are transparent, interpretable, and, most impor-
tantly, subject to human oversight. This includes ongoing
monitoring and transparency in model decision-making as
visualized by police officers within police departments and
law enforcement agencies. According to the special role
of law enforcement agencies and how they interact with
societies, an interdisciplinary strategy, engaging experts from

policing, computer science, law, and ethics, is essential to
tackle the challenges and operational needs associated with
the deployment of algorithms, especially generative AI such
as LLMs in smart policing. This approach defines guidelines
for transparency, comprehensibility, and ethical considera-
tions. These guidelines should be crafted collaboratively,
considering the inputs from all relevant stakeholders, and
should evolve with advancements in technology and changes
in societal expectations [17].

VII. LIMITATIONS
While advancing the application of LLMs in smart policing,
this paper identified several limitations that warrant further
exploration.

• The performance of the LLMs, including GPT-3 and
GPT-4, demonstrated significant variability between
the San Francisco and Los Angeles datasets. This
underscores the challenge of adapting LLMs to datasets
with different characteristics and features and diverse
urban settings with unique crime patterns.

• Another important point and possible improvement
of this research is performing an explicit calibration
of the LLM outputs to achieve reliable probability
estimates. For sensitive applications such as predictive
policing, calibration is critical to ensure that the model’s
predictions can be interpreted accurately and confidently
by law enforcement. This area has not been explored,
representing a gap between model development and its
practical, real-world application.

• Furthermore, although this paper acknowledges the
importance of addressing potential biases and ethical
concerns when deploying AI for crime prediction and
smart policing in general, it does not provide a detailed
framework for identifying, mitigating, and monitoring
these issues.

VIII. CONCLUSION AND FUTURE WORK
The experiments in this paper demonstrate the feasibility
of using LLMs in smart policing, with their superiority
over traditional ML models in crime incident prediction
tasks. The exploration of crime prediction models applied
to datasets from SF and LA offers an in-depth understand-
ing of the capabilities of LLMs, including GPT-3, and
GPT-4, highlighting their capacity for crime classification.
In particular, our fine-tuned GPT-3 model exhibited superior
performance compared with traditional models, such as RF,
in the SF dataset. However, the performance of LLMs
on the LA dataset presents challenges and disparities,
suggesting that their adaptability may vary according to the
dataset characteristics. Interestingly, no single model has
emerged as a powerful tool for the LA dataset. Although
few-shot learning on GPT-4 exhibits marginal improvement,
it still fails to comprehend the underlying complexities of
the dataset. This result emphasizes the dataset-dependent
nature of both the ML models and LLMs. The underlying
reason for the disparities in the performance of the models
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on different datasets can be attributed to the different
characteristics and features present in each dataset, and the
struggles of the GPT models to adapt to some of these
features in the LA dataset. This result emphasizes the
dataset-dependent nature of both the traditional ML models
and LLMs. Moreover, this indicates that crime prediction is
a complex task as it depends on many factors related to an
urban environment. Therefore, a comprehensive evaluation of
different approaches is required to achieve the most suitable
solution for this task before integrating them into real-world
systems.

As LLMs have become integrated into broader applications
of smart policing, there is growing scope for future work
to address various challenges and explore opportunities.
One significant avenue of exploration involves refining the
capabilities of LLMs in analyzing recorded conversations
between police and victims. Future research could focus
on developing advanced techniques for extracting critical
information from dialogues, improving sentiment analysis for
an accurate understanding of emotional tones, and enhancing
the recognition of relevant contexts to aid investigators in
their decision-making process. In addition, the processing
of videos and images from body cameras or security
surveillance cameras presents a multifaceted challenge that
future work can address. Research efforts may concentrate
on refining computer vision algorithms integrated with LLMs
to accurately recognize and track objects and individuals in
real-time. Moreover, there is a need for advanced methods
for event detection and anomaly identification within video
streams to ensure efficient monitoring of complex urban envi-
ronments. Future work in these domains should also prioritize
ethical considerations, transparency, and accountability,
ensuring the responsible deployment of these technologies
in law enforcement to maintain public trust and safeguard
individual rights. Our findings also emphasize the importance
of conducting experiments in various scenarios to build more
practical frameworks for smart policing. Although LLMs
demonstrate superiority in certain contexts, their perfor-
mance can be influenced by dataset-specific characteristics.
Therefore, future research should explore the adaptability
of language models to different urban environments by
considering the interplay of socioeconomic, cultural, and
geographical factors. Furthermore, the discrepancy between
our results and related works underscores the complexity
of evaluating models beyond their accuracy scores. Factors
such as model interpretability, computational efficiency, and
ethical considerations play a pivotal role in determining the
most suitable model for real-world applications. A holistic
evaluation that considers diverse metrics and practical
implications is essential for ensuring the trustworthiness and
scalability of predictive policing models. Future endeavors
in the realm of smart policing and crime prediction should
leverage these insights, emphasizing the context-specific
nature of crime datasets and the continual evolution required
in LLMs for optimal outcomes in diverse urban and cultural
conditions.
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