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A B S T R A C T

In recent years, the global manufacturing industry has continuously undergone digital transformation amidst 
intense competition. The traditional experience-based lean production model is inadequate to resolve issues like 
declining equipment efficiency and frequent failures. This study proposes a fault diagnosis and improvement 
strategy that integrates the LDA topic model with the Six Sigma DMAIC methodology, carrying out in-depth 
analysis of failure factors in key processes on the production line and implementing a 12-week lean improve
ment initiative in a case enterprise. The results show that after these improvements, the production line’s overall 
equipment effectiveness (OEE) increased significantly from 71 % to 84 %, with a marked reduction in equipment 
failure frequency, thereby ensuring enhanced production stability and reliability. This study overcomes the 
limitations of traditional lean methodologies’ reliance on structured data by integrating data-driven decision- 
making into the conventional Lean Six Sigma framework, not only providing a quantitative foundation for 
equipment fault diagnosis but also offering new theoretical perspectives and practical pathways for continuous 
improvement and intelligent transformation in manufacturing.

1. Introduction

In recent years, against the backdrop of intensified international 
competition, the industrial sector has increasingly emphasized applying 
lean production principles to corporate operations and management, 
aiming to gain a competitive edge by eliminating waste and enhancing 
efficiency and quality. Studies have shown that green lean practices not 
only improve resource utilization and environmental performance but 
also help enterprises better meet increasingly stringent sustainability 
requirements [1]. Meanwhile, manufacturing business models are 
gradually shifting from a traditional experience-driven approach to 
data-driven operational decisions. By deeply integrating products and 
services, enterprises can achieve more accurate demand forecasting and 
continuous improvement [2]. However, as manufacturing systems 
become increasingly digitalized and information-driven, relying solely 
on experience-based management makes it difficult to maintain stable 
and efficient operations in a complex and rapidly changing market. 
Consequently, integrating Industry 4.0 technologies with lean method
ologies has become an inevitable trend [3]. This integration not only 
optimizes internal production and logistics processes but also employs 
real-time data collection and digital decision-making to effectively 

address potential risks such as market fluctuations and supply chain 
disruptions [4]. Furthermore, when constructing and operating a lean 
production system, enterprises must balance flexibility and resilience, 
ensuring they maintain a stable production rhythm and high-level ser
vice even as external conditions shift [5]. In summary, lean production is 
evolving from a traditionally experience-driven model into a data ana
lytics- and technology-driven decision process, continually driving 
transformation and upgrades in industrial operations.

In the context of Industry 4.0, the digital transformation of enter
prises’ lean production systems requires data-driven decision-making 
tools, which are strongly supported by the wide application of machine 
learning methods. Huang et al. [6] applied deep learning models to 
real-time storage detection of oil tanks in ports, which provides a data 
base for industrial port management and resilience research. Huang 
et al. [7] applied a machine learning approach to construct a vehicle 
speed predictor for the energy management problem of fuel cell vehi
cles. Li et al. [8] Hybrid computer vision approach for pavement crack 
detection applying machine learning. As machine learning methods 
continue to evolve, traditional lean manufacturing models also need to 
move from empirically dependent localized improvements to systematic 
innovations based on global data models. Latent Dirichlet Allocation 
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(LDA) is an important data-driven decision-making tool that can be 
flexibly applied to research in areas as diverse as technology trends [9], 
urban climate [10], and supply chain [11], as well as to support the 
digital transformation of lean manufacturing systems. By establishing a 
three-layer Bayesian probabilistic model encompassing documents, 
topics, and terms, LDA uncovers latent semantic correlations among 
multimodal data in manufacturing systems, including equipment sensor 
data, quality inspection reports, and supply chain texts. This approach 
not only reveals hidden efficiency losses beyond the traditional "seven 
wastes" but can also integrate green lean concepts to quantify the 
coupling relationship between resource consumption and environ
mental performance [3].

The current mainstream lean manufacturing model relies heavily on 
manual experience and structured data analysis [12,13]. Compared with 
the traditional lean model, the machine learning-enabled lean frame
work is able to simultaneously parse temporal, spatial, and unstructured 
data in the manufacturing system, breaking through the traditional 
dependence on structured data for value stream analysis. Enzhi Dong 
et al. (2025) proposed to train a Transformer network using equipment 
historical data to determine the degradation categories of mechanical 
systems and to dynamically obtain the probability distribution of the 
remaining service life of the equipment using the Kernel Density Esti
mation approach [14];Lubing Wang et al. (2025) used data monitored 
by sensors to perform predictive maintenance on aircraft engines, pre
dicting possible system failures in advance and taking proactive main
tenance measures [15];Suhwan Lee et al. (2025) Predictive Maintenance 
of Butterfly Valves in Ship Exhaust Systems Based on Ship Butterfly 
Valve Number and Exhaust Time Interval Data [16]. However, in most 
of the current predictive maintenance research, it needs to rely on 
professional analysts to conduct a large number of experiments and data 
analysis. The practical application of these predictive maintenance 
methods in an organization requires a higher level of digital competence 
from frontline employees, which adds a huge challenge to the opera
tional cost as well as efficiency of the organization. Compared to 
quantitative analysis methods that require a certain level of statistical 
knowledge, LDA’s subject-matter word interpretation relies more on 
business experience than on mathematical ability. In the manufacturing 
industry, the equipment maintenance logs recorded by frontline em
ployees may contain terms, abbreviations, and colloquial expressions of 
their daily work, and LDA clusters these words into corresponding 
themes. The generated topic words are directly mapped to the em
ployees’ practical operations, avoiding the barrier of understanding 
caused by abstract concepts. LDA can automatically identify descriptive 
features related to equipment failures, extract potential topics of quality 
defects from unstructured data, and provide data support for con
structing an enterprise knowledge graph [17,18]. Meanwhile, LDA 
supports incremental training, which can adjust the topics in real time 
according to the new operation records added by employees, and 
transforms abstract topics into intuitive vocabulary collections through 
word clouds, heat maps, and other visualization tools.

In summary, data-driven decision-making in Industry 4.0 relies on 
the fusion of heterogeneous data from multiple sources, while existing 
Industry 4.0 platforms often face problems such as semantic discon
nection of multimodal data and the existence of cross-process informa
tion silos in the manufacturing site in practical applications. This study 
applies the LDA methodology to the lean manufacturing framework to 
break through the reliance on empirical as well as structured data in the 
traditional production maintenance system, and to provide new appli
cations and research ideas for the study of lean manufacturing and 
predictive maintenance in the context of Industry 4.0.

2. Literature review

2.1. Lean six sigma

Lean Production originated from the Toyota Production System and 

centers on systematically identifying and eliminating non-value-adding 
activities to enhance operational efficiency and product quality while 
maximizing customer value [19].Guided by this principle, companies 
must not only continually refine their production processes but also 
emphasize effective coordination among personnel, equipment, and 
materials [20]. Lean manufacturing is widely used in the manufacturing 
industry thanks to the continuous improvement mechanism it estab
lishes. Mojan Eskandari et al. (2022) used a lean framework to assess the 
performance of pharmaceutical factories [21];Darian Pearce et al. 
(2021) applied lean management in fruit horticulture in South Africa to 
achieve sustainable primary production [22];and Alessia Bilancia et al. 
(2025) applied the lean model to the luxury fashion industry to promote 
the sustainability in luxury fashion [23]. On one hand, its focus on 
"meeting customer needs" and "adding value to processes" enables 
companies to flexibly adjust operations in ever-changing market con
ditions; on the other hand, by minimizing waste, standardizing pro
cesses, and encouraging employee participation, organizations strike a 
balance among shorter delivery lead times, lower costs, and higher 
quality. Whether in highly automated assembly lines or workshops 
featuring manual or small-batch production, Lean Production helps 
enterprises uncover opportunities for cost reduction and efficiency 
gains, laying a solid foundation for subsequent efforts in sustainability 
and digital transformation.

Six Sigma is a data-driven method for quality improvement and 
process optimization aimed at reducing process variation through sys
tematic steps, thereby enhancing overall operational performance [24]. 
Its core philosophy employs statistical tools and management tech
niques to drive continuous improvement in production or service pro
cesses, striving for near-zero defect levels [25]. In practice, Six Sigma’s 
DMAIC (Define, Measure, Analyze, Improve, Control) framework is 
widely used. Lokpriya M. Gaikwad et al. (2022) Implementation of Six 
Sigma model to enhance the competitive advantage of firms [26];Ivana 
Tita Bella Widiwati et al. (2024) Implementation of Lean Six Sigma 
methodology to minimize wastage in food manufacturing industry [27]; 
Michael E. Natarus et al. (2025) Optimizing aseptic processing de
partments, staffing increases, and capital investments using Lean Six 
Sigma methodology [28]. By utilizing a scientific quantitative method
ology and a series of structured improvement steps, Six Sigma not only 
effectively reduces process waste, but also dramatically improves qual
ity consistency while fostering a culture of continuous improvement 
[29].

Lean Six Sigma is a continuous improvement methodology devel
oped to synthesize the benefits of Lean Manufacturing and Six Sigma. 
Lean Manufacturing advocates the elimination of unnecessary waste, 
while Six Sigma utilizes statistical methods to keep defect rates at very 
low levels. Lean Six Sigma combines these two approaches by not only 
streamlining processes through Lean principles, but also by applying Six 
Sigma’s quantitative methods to identify the root causes of problems, 
resulting in both efficiency and quality improvements.

Most current Lean Six Sigma studies utilize tools such as value stream 
mapping, Kanban, 5S, single-minute mold change, statistical process 
control and hypothesis testing. Traditional Lean Six Sigma research tools 
rely on manual experience to identify waste and lack a data-driven dy
namic assessment model. Lean manufacturing is mostly based on 
structured metrics and fails to effectively integrate semantic clues from 
textual data such as equipment logs. Meanwhile, traditional Six Sigma 
relies on normal distribution assumptions, which makes it difficult to 
handle high-dimensional data and has limitations in adapting to com
plex systems. Therefore, the Lean Six Sigma model needs to explore how 
to deeply integrate with complex dynamic production environments and 
unstructured data processing methods to achieve more efficient and 
accurate process optimization, and to promote the upgrade of Lean Six 
Sigma from staged improvement to continuous adaptive optimization.
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2.2. Latent dirichlet allocation

Latent Dirichlet Allocation (LDA) is a generative probabilistic topic 
model widely employed to uncover latent topics from large-scale text 
data. Its core concept views each document as a mixture of multiple 
hidden themes, with each theme characterized by a probability distri
bution of words [30]. Within this model, every word in the text is 
assumed to be generated by a particular underlying topic governed by 
Dirichlet priors, thereby enabling automatic discovery of topic struc
tures under unsupervised conditions [31].

LDA has been applied in numerous domains, including energy and 
environmental research on user energy consumption behavior [31], 
literature-based topic mapping in supply chain and operations man
agement [32], sentiment and preference analysis of online user reviews 
[33], and evaluations of urban mobility and traffic policies [34]. By 
representing text as a "bag of words" and using probabilistic inference to 
distribute word frequencies among different topics, researchers can 
intuitively capture the main issues underlying large amounts of textual 
data, thus providing robust evidence for policy-making and operational 
decisions [30].

In the LDA model, the generation of a document is treated as a 
probabilistic procedure (Eq. (1)). The objective is to use the topic and 
word distributions to describe the probability of each word occurring in 
a given document. 

P(w) =
∏N

n=1
φK

z=1P(wn|z;φ)P(z|d; θ) (1) 

Where w is the set of all words in the document, wn represents the n-th 
word in the document, z is a latent (unobserved) variable denoting the 
topic to which wn belongs, ϕ is the word distribution for each topic, and 
θ is the topic distribution for the document.

Typically, LDA modeling involves several key steps. First, the text 
data are collected and cleaned, followed by tokenization, removal of 
stop words, and other preprocessing steps to reduce noise. Next, the 
number of topics (k) and the hyperparameters α and β are set, and 
iterative sampling or optimization is performed on the corpus to obtain 
both the document–topic and topic–word distributions [30]. Finally, the 
keywords associated with each topic are qualitatively analyzed and 
labeled, and the model’s results are interpreted and applied in 
conjunction with relevant domain knowledge and research context [35].

LDA demonstrates strong scalability and interpretability in the fields 
of natural language processing and text mining, which has gradually 
established it as a key tool for understanding large-scale text data. 
Current research on LDA in manufacturing industry mostly focuses on 
macro studies such as research theme analysis [36], bibliometrics [37], 
and exploration of sustainable manufacturing paths [38], and lacks the 
exploration of the application to the actual production of enterprises. 

Therefore, this study will combine the synergistic application of LDA 
methods and Lean Six Sigma in enterprise production to provide new 
ideas for production optimization in the context of Industry 4.0.

3. Methodology

This study employs a case study approach to investigate the funda
mental causes impacting the overall equipment effectiveness (OEE) of 
the company’s packaging production line and propose lean improve
ment initiatives to boost production efficiency. The case study method 
offers flexibility for conducting both quantitative and qualitative ana
lyses of specific events within a company [39], and it is widely used 
across various fields such as industrial production, healthcare, and 
economics. The information and data required for this case were gath
ered through on-site observation at the enterprise, as well as through 
expert opinions from its production, engineering, and continuous 
improvement departments. As shown in Fig. 1, the research framework 
follows the five DMAIC phases of Six Sigma: Define, Measure, Analyze, 
Improve, and Control to ensure that the research process is systematic 
and scientific.

In the definition phase, the SIPOC model is used to clarify the pro
duction process boundaries and core bottlenecks, and equipment reli
ability is targeted as the key improvement goal in conjunction with 
internal and external customer requirements. In the measurement stage, 
the efficiency baseline is established by quantifying the comprehensive 
efficiency indexes of the equipment, and the time loss is categorized to 
identify the specific shortcomings in the three major dimensions of 
equipment availability, performance efficiency and quality pass rate. In 
the analysis stage, the LDA theme model is innovatively applied to 
extract the core fault themes from the equipment fault records and verify 
the root causes of the faults with on-site observation. In the improve
ment phase, 5S on-site management, error-proof design, parameter 
optimization and other measures are applied, and standardized main
tenance processes are developed simultaneously to solidify the mea
sures. In the control phase, real-time monitoring of equipment status, 
construction of fault theme intensity heat map dynamic tracking of re
sidual risk, and through the standardization of cleaning processes, 
quality feedback mechanism to achieve continuous improvement. Data- 
driven decision-making and cross-departmental collaboration are car
ried out throughout the entire process, exploring the practical value of 
integrating traditional Six Sigma tools with text mining technology.

4. The case study

This company ranks among the world’s largest fast-moving con
sumer goods manufacturers. In the packaging workshop of this case- 
study factory, each production line follows a similar workflow. For the 
purposes of this study, one production line that is highly representative 

Fig. 1. Research framework.
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of industry standards was selected for case analysis. The primary prod
uct processed on this line is a particular type of edible sauce, which is 
one of the company’s top-selling items. However, the OEE of this pro
duction line has remained below the target for an extended period, 
resulting in financial losses and negatively impacting both customer 
satisfaction and production output. Consequently, the company decided 
to initiate a 12-week lean improvement project on this production line to 
ensure a marked and stable increase in OEE, reaching a high-level target. 
Fig. 2 presents the workflow of the selected packaging line, which in
cludes seven major steps: bottle unloading, filling, cap placement, la
beling, lane division, carton forming, boxing, sealing, and palletizing.

4.1. Define phase

In the Define phase, a SIPOC model (Supplier, Input, Process, Output, 
Customer) was constructed to clarify and standardize each stage of the 
production process, thereby identifying specific bottlenecks causing ef
ficiency losses. The "Supplier" component refers to the pre-processing 
department for raw materials, which delivers sterilized and seasoned 
materials to the subsequent packaging stage. The "Input" comprises 
various materials required for the packaging line, such as raw materials, 
bottles, caps, labels, and cartons. The "Process" represents the main 
technological steps in the packaging line, while the "Output" pertains to 
the finished, packaged products. Finally, the "Customer" component 
includes the wholesalers who sell the finished product. The detailed 
SIPOC flow is illustrated in Fig. 3.

From the SIPOC model and on-site observations, it was determined 
that the central bottleneck in the current workflow is low production 
efficiency, which directly impedes the company’s ability to meet 
customer demands. Moreover, by applying the Voice of the Customer 
(VOC) method, the research team captured feedback from internal 
customers (the pre-processing department and line operators) as well as 
external customers (wholesalers), thus more intuitively pinpointing the 
pain points arising from process bottlenecks. Wholesalers indicated that 
production capacity is approaching its limit, compromising respon
siveness to rising demand. Meanwhile, the pre-processing department 
noted that frequent equipment downtime for maintenance significantly 
disrupts the execution of production plans. In addition, the line opera
tors reported that the production equipment operates inconsistently and 
experiences frequent malfunctions, posing a serious drag on overall 
production efficiency. Consequently, reliability and maintenance man
agement of the equipment emerged as the core issues constraining 

production efficiency, necessitating targeted measures for improvement.

4.2. Measure phase

During the Measure phase, data were gathered over a 12-week 
period, primarily focusing on the production line’s OEE indicator and 
daily records of time losses. In the initial three weeks, the line’s OEE was 
notably suboptimal; starting from the third week through the twelfth, a 
Lean Six Sigma improvement plan was implemented to raise the line’s 
OEE to a stable, high-level target.

OEE was first defined by Nakajima in 1988, classifying losses ac
cording to three main dimensions—Availability (A), Performance (P), 
and Quality (Q)—and six forms of loss, including breakdowns, setup and 
adjustment losses, idling and minor stoppages, speed loss, defects and 
rework, and startup losses [40]. In this case study, the company refined 
the OEE calculation metrics by quantifying time-based waste to evaluate 
the comprehensive efficiency of production line equipment (as shown in 
Table 1) [40,41].

By collecting and measuring the company’s OEE data from Weeks 1 
to 3 (Fig. 4), we found the OEE to be considerably below the world-class 
benchmark of 85 % [39], and it showed a steadily declining trend. This 
posed a serious threat to the company’s production efficiency, high
lighting the urgent need for corrective action.

4.3. Analyze phase

In the Analysis phase, we first categorized the causes of equipment 
failures and downtime according to the packaging line’s workflow and 
major machines, dividing them into the following groups: filling ma
chine, labeling machine, boxing machine, cap placement machine, 
bottle unloading machine, sealing machine, forming machine, lane 
divider, palletizing, and conveyor chain. Using a Pareto chart, we then 
identified the equipment that accounted for only 20 % of downtime 
incidents yet produced as much as 80 % of the negative impact on 
overall operational efficiency (Fig. 5). The Pareto analysis revealed that 
the filling machine, labeling machine, and boxing machine were 
responsible for causing up to 80 % of the negative impact on overall 
efficiency.

Next, we applied the LDA model to further analyze the factors that 
lead to device failures and determine the optimal number of topics based 
on the ease of mixing and consistency measurements. In terms of stop 
words selection, we selected the list of commonly used stop words 

Fig. 2. The working process of the packaging line in.
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published by the Natural Language Processing Laboratory of Harbin 
Institute of Technology according to the location of the plant, which 
includes such words as “the”, “is”, “in ”, “are”, “in”, “you” and so on. In 
terms of topic count selection, the number of LDA topics in current 

mainstream research needs to be determined based on one or more 
different metrics, such as consistency, perplexity, or differences between 
topics based on LDA visualization [42]. The higher the number of topics, 
the lower the model’s perplexity will be, but the perplexity will continue 

Fig. 3. SIOPC definition process.

Table 1 
A comparison of these metrics is provided.

Nakajima Case Company

Availability (A) Loading time − downtime
Loading time

Scheduled Time Total Available Time − Unscheduled Time

Performance (P) Ideal cycle time ∗ output
Operating time

Production Time Scheduled Time − Planned losses

Quality (Q) Input − volume of quality defects
Loading time

Full Rate Time Production Time − Unplanned Losses

OEE A*P*Q OEE Full Rate Time
Scheduled Time

Fig. 4. The OEE trend from the 1st to the 3rd week.
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to decline with the increase in the number of topics, when the generated 
model will be overfitting, so it is also necessary to combine with the 
consistency index to select the optimal number of topics comprehen
sively. In this study, we set the number of potential themes in the range 
of [1,10] as shown in Fig. 6, with a continuous decrease in the perplexity 
level while the consistency level has a localized maximum at a theme 
number of four. And in the visualized bubble map in Fig. 7, the bubbles 
are uniform in size and do not overlap, and the theme classification is 
largely consistent with the Pareto analysis, so the choice of 4 number of 
themes as the optimal theme is robust.

Table 2 presents the distribution of topic keywords identified in this 
study, which indicate four principal categories of equipment failures: 
Topic 1, failures in the filling process; Topic 2, failures in the labeling 
process; Topic 3, failures caused by bottle breakage in various stages; 
and Topic 4, failures in the boxing process.

A combination of keywords from the four subject categories and on- 
site observations revealed that: the main downtime issues for filling 
machines were clogged nozzle lines, clogged filters, jammed inner caps, 
jammed outer caps, and excessive foaming; the main causes of downtime 
for labeling machines included misaligned labels, damaged labels, and 
blurred print codes; and the main causes of downtime for case packers 

were loose or unlit sensors (photo-eyes), bottle grippers that were not in 
alignment, and conveyor belt slippage. Also, bottle breakage can occur 
at various points in the production line, which can lead to equipment 
downtime.

4.4. Improve phase

In response to major downtime issues with the filling machines, or
ganization and tidying up was first enhanced by sorting tools and items 
around the equipment and introducing a Poka-yoke design, where items 
are painted in eye-catching colors to ensure that maintenance staff can 
quickly find the tools and accessories they need (Fig. 8). Next, cleaning 
processes were standardized, and nozzles and filters were cleaned 
regularly, especially in areas where dirt tends to accumulate, to prevent 
clogging problems. At the same time, standardized operating procedures 
for equipment maintenance were developed and implemented to reduce 
operating abnormalities caused by excessive machine foam through 
division of responsibilities and regular inspections. Finally, in response 
to the problem of cap jamming, we have largely reduced the downtime 
caused by cap jamming by replacing the original cap material with a cap 
that separates the inner cap from the outer cap and a cap that integrates 

Fig. 5. Pareto analysis of equipment breakdown shutdowns.

Fig. 6. The perplexity and consistency of topic modeling.
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the inner cap with the outer cap.
For the main downtime problems of the labeling machine, through 

the production process, constantly adjust the transmission system and 
positioning device of the labeling machine, to ensure the stability of the 
label in the conveying process, and strengthen the precise control of the 
labeling position. At the same time, optimize the nozzle settings of the 
coding equipment to ensure that the ink flow and printing distance is in 
the best state, and regularly clean the nozzles to prevent ink clogging 
affect the quality of coding.

In response to the major downtime problems of the case packer, we 
ensure that the photo eye remains stable during operation by tightening 
the mounting parts. At the same time, check the installation status 
regularly and deal with loose parts in time. Regularly check the power 
supply and wiring connections of the photo eye to avoid failure due to 
poor contact or aging of the wiring, and develop a maintenance plan for 
cleaning the surface of the photo eye to prevent dirt from affecting the 
detection effect.

To address the problem of bottle bursting that occurs in various 
segments, the star wheel parts are adjusted as the entry point. The star 
wheel is a key component in the conveyor system of the production line, 
and its main function is to guide and position the bottles so as to keep 
them stable during the processing such as conveying, filling and clean
ing. If the gap, position or rotational speed of the star wheel is not 
adjusted in place, it may cause bottles to be subjected to excessive stress 
or collision during operation, thus increasing the risk of bottle bursting. 
Therefore, by constantly adjusting and polishing the star wheel com
ponents to optimize the gap, ensure that the rotational speed is matched, 
and avoid excessive squeezing of bottles, the possibility of uneven stress 
on bottles can be effectively reduced, thus reducing the probability of 
bottle bursting and improving the stability and safety of the production 
line.

In summary, as shown in Fig. 9, through the implementation of a 
series of targeted improvement measures, the overall equipment 

efficiency (OEE) of the production line improved significantly between 
weeks 4 and 12, rising steadily from 71 % to 84 %, an increase of 13 
percentage points. Together, these measures have enhanced the stabil
ity, safety and efficiency of the production line, and the continued rise in 
OEE fully validates the effectiveness of the improvements.

4.5. Control phase

In the control phase, using the same steps as in the analysis phase, 
LDA topic modeling was performed on the failure records during the 
improvement phase period to identify the distribution and evolution of 
the topics that lead to equipment failures during the improvement 
process. The results of the visualization are shown in Fig. 10, and the 
main themes that still exist that can lead to equipment failures are: topic 
1 failures in the conveying process, topic 2 failures in the cleaning 
process, and topic 3 failures in the coding process.

For topic 1, in the control of the conveying link, establish a perfect 
monitoring system to ensure that every part of the conveying link can be 
tracked and detected in real time. Installing monitoring equipment in 
key parts such as conveyor belts, sensors and drive systems to monitor 
their operating status in real time can effectively detect potential failure 
risks. In addition, the establishment of standard operating procedures 
and a failure warning mechanism ensures quick response and resolution 
when problems arise.

For topic2, in the control of the cleaning process, optimize the 
cleaning process and the use of tools to ensure that all cleaning steps 
comply with the standard operating procedures, to avoid equipment 
failures caused by the use of improper tools or chemicals. We also 
establish a cleaning quality inspection system, regularly evaluate the 
cleaning effect, and timely rectify the problematic cleaning links to 
ensure stable cleaning quality. At the same time, strengthen the opera
tion of the staff training, improve their understanding of the importance 
of the cleaning process and compliance with operating standards, 

Fig. 7. Equipment Failure Topic Model.
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effectively reduce the risk of equipment failure caused by human factors.
For topic3, in the control of the coding link, ensure the regular 

maintenance and inspection of coding equipment, especially the clean
ing and maintenance of printheads and ink systems, ensure that the 
coding equipment undergoes the necessary inspections and adjustments 
before and after use, and discover possible wear and tear or clogging 
problems in a timely manner. At the same time, the implementation of 
the coding quality monitoring system, the coding effect of each batch of 
random checks and feedback to ensure that the quality of coding meets 
the requirements.

Based on this, a heat map of theme intensity is further developed to 

show the change in intensity of the equipment failure themes present 
during the improvement phase period, helping us to identify the 
evolutionary trend of each theme over time. The heat map reflects the 
heat level of each theme within a specific time period by color shades, i. 
e., the frequency or intensity of the theme’s occurrence within that time 
period. As shown in Fig. 11, the horizontal coordinate represents the 
time dimension and the vertical coordinate represents the theme 
dimension. The darker the color in the heat map means the higher the 
heat of the corresponding theme in that period, and vice versa. In the 
control phase, the problems that still existed and would lead to equip
ment failure were effectively controlled, and the control measures not 
only improved the stability and productivity of the equipment, but also 
enhanced the reliability of the overall production process, guaranteed 
the stability of product quality, and achieved the goal of continuous 
improvement.

5. Conclusions

Compared with traditional methods, this study is able to identify root 
causes and potential themes affecting equipment downtime more 
effectively by applying the LDA method to production line equipment 
failure analysis. In the analysis stage, when the root causes of the 
problems are complex and not clearly categorized, the LDA method can 
identify potential correlates through theme clustering and discover un
defined problem clues. Traditional Lean analysis tools such as Pareto 
charts require manual labeling of problem clusters and reflect the sur
face of the problem, not revealing the complex cause and effect re
lationships. In the control phase, traditional lean tools such as control 
charts focus more on real-time responses to known indicators and 
identify abnormal fluctuations through statistically structured data. 
LDA’s thematic evolution approach is more forward-looking, generating 
evolutionary path diagrams to capture long-term dynamic trends of 
implicit semantic associations and warn of potential systemic failure 
risks. Meanwhile, the integration of the LDA approach into the lean 
manufacturing system in this study also has the advantage of cross- 
environmental applicability because of its synergistic capability of 
structured problem diagnosis and data-driven logic. By parsing un
structured data such as equipment failure logs and process parameter 
records through text mining techniques, common failure themes in 
different production environments can be automatically clustered, and 
this semantically-associated root cause analysis breaks through the 
limitations of traditional empirical analysis. Whether it is a highly 
automated factory or a labor-intensive packaging line, the LDA method 

Table 2 
The distribution of topic terms.

Topic Term

Topic1 Filling-stage failures Filling, Cap Sorter, Cleaning, Cap Jam, 
Engineering, Blockage, Labeling Machine, 
Star Wheel, Foam, Bottle Washing, Oil 
Leakage, Half Bottle, Solenoid Valve, 
Misalignment, Overload, Label Sticking, 
Label Fly-off, Bottle Loading, Maintenance, 
Boxing, Inner-Cap Channel, Waiting, Tank 
Change, Blocked Passage, Cap-Separation 
Disc, Filter, Cap Disc, Cap Feeding, Infeed, 
Pipeline, Soy Sauce, Conveyor Chain, Filter 
Mesh, Pressure, Alarm, Cause, Cap Blockage, 
Photo-Eye, Screw, Production, Finished 
Product, Sensor, Bottle Body, Machine 
Freeze, Unable to Open, Low Speed, Air 
Tube, Search, Connection Point, Frequent.

Topic2 Labeling-stage failures Labeling Machine, Label Fly-off, Labeling 
Station, Cap Sorter, Bottle Breakage, Anti- 
counterfeiting, Engineering, Filling, Bottle 
Infeed, Label Sticking, Lead Screw, 
Maintenance, Fracture, Star Wheel, Screw, 
Boxing, Fastening, Barcode, Label 
Misalignment, Misalignment, Photo-eye, 
Alarm, Detachment, Rubber, Half Bottle, 
Open, Finished Product, Bottle Unloading, 
Deviation, Air Tube, Position, Tripod, 
Removal, Damage, Label, Bottle Washing, 
Foam, Bottle Feeding, Blowing Caps, Bottle 
Jam, Guard Plate, Gluing, Tilt, Full Bottle, 
Tear, Inspection, Cap Jam, Proportional 
Valve, Feeding, Gripper Head.

Topic3 Bottle-breakage-induced 
failures at various stages

Filling, Boxing, Labeling Machine, Bottle 
Breakage, Bottle Washing, Labeling Station, 
Foam, Star Wheel, Label Fly-off, Blockage, 
Low Speed, Engineering, Cap Sorter, Label, 
Fracture, Maintenance, Filter Mesh, 
Cleaning, Platform, Gripper Head, 
Misalignment, Oil Spray, Capping, Cap Press, 
Anti-counterfeiting, Detachment, Safety 
Door, Alarm, Speed, Operation, Photo-eye, 
Glue, Inverted Bottle, Production, Bottle 
Jam, Bottle Tray, Conveyor Chain, Machine 
Gripper, Tank Change, Start-up, Infeed 
Washing, Waiting, Pressure, Running, 
Cleaning, Bottle Infeed, Bottle Loading, 
Standby, Drum, Lead Screw.

Topic4 Boxing-stage failures Boxing, Labeling Machine, Misalignment, 
Label Fly-off, Bottle Gripper, Labeling 
Station, Bottle Infeed, Loose, Bottle 
Breakage, Filling, Conveyor Chain, Bottle 
Neck, Opening, Label, Lead Screw, Tipped 
Bottle, Screw, Photo-eye, Machine Gripper, 
Cap Sorter, Case Infeed, Capping Section, 
Pipeline, Cap Feeding, Deviation, Belt, Air 
Leak, Corner Curl, Cleaning, Capping, 
Fastening, Platform, Cap Blockage, 
Jamming, Dropping, Tilt, Fixing, Glue 
Volume, Material Pushing, Beam, Bottle 
Gripper Head, Damage, Star Wheel, Safety 
Door, Cap Press, Tank Change, Tripod, Filter, 
Finished Product, Soy Sauce.

Fig. 8. On-site Poka-yoke Examples.
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can extract different potential problems by analyzing text records.
In the social and environmental aspects, the integration of LDA 

methodology into the lean production system can systematically identify 
the resource waste patterns and environmental impacts implicit in the 
production process, thus providing a scientific basis for decision-making 
to optimize resource utilization, reduce carbon emissions and achieve 
sustainable development. By analyzing unstructured data such as pro
duction documents, process records or environmental monitoring re
ports, “waste themes” such as abnormal energy consumption, material 
redundancy and inefficient processes can be unearthed and synergized 
with the Lean Manufacturing’s resource lifecycle management and 
continuous improvement mechanisms. This combination not only 
strengthens lean production’s insight into “hidden waste” such as energy 
loss in non-value-added activities, but also quantifies the priority of 
environmental impacts through the probability distribution of themes, 
guiding enterprises to accurately invest resources in process reengin
eering, supply chain synergy, and green technological innovation. At the 
same time, LDA’s dynamic thematic evolution analysis can track the 
effects of improvement measures over time, which helps companies 
build eco-lean systems that balance productivity, social responsibility 
and ecological benefits.

In terms of methodological applicability, expanding the application 
of LDA methodologies to non-manufacturing or automated systems re
quires adaptations around the core capabilities of topic modeling and 
data parsing. In the non-manufacturing sector, LDA can be used to 
optimize business processes by analyzing textual data from business 
processes to uncover themes of potential efficiency bottlenecks or 
resource wastage. In automation systems, LDA can be combined with 
real-time sensor data and operation logs to achieve anomaly monitoring 
and decision-making optimization by dynamically updating topic 
models. Maintenance records of automated equipment can be mapped to 
production parameters as “fault-condition” correlation topics, which 
can assist in the optimization of predictive maintenance algorithms. The 
key to this cross-domain migration is to transform the “value stream 
analysis” logic of lean manufacturing into a data-driven topic clustering 
task, and at the same time break through the limitations of traditional 
manufacturing data structures through algorithmic improvements.

In this study, in terms of the generalizability of the method, it can 
adapt to the data characteristics of different production scenarios, and 
the model can be flexibly adapted to differentiated production 

environments, such as discrete manufacturing and process industries, 
through the selection of the number of topics and the supplementation of 
deactivated words. At the horizontal scalability level, the LDA method 
can be used in intelligent manufacturing workshops by deploying edge 
nodes for localized topic extraction of production anomaly reports 
generated in real-time, and then aggregating the global topic distribu
tion, which not only meets the demand for low-latency response but also 
safeguards data privacy. At the vertical extension level, it can be com
bined with different lean tools. When combined with value stream 
mapping, non-value-added links can be identified by parsing theme 
clustering in process documents; when combined with the On-Light 
system, the theme evolution trend of equipment failure logs can be 
mapped to the prediction of anomaly patterns in physical production 
lines.

In summary, through theoretical analysis and case validation, this 
study reveals the synergistic driving mechanism of the deep integration 
of LDA methodology and Lean Six Sigma framework on the operational 
excellence of enterprises, which breaks through the dependence of 
traditional Lean tools on structured data and promotes the quality 
improvement from passive corrective to active preventive, and provides 
methodological support for the construction of the data-driven sus
tainable operational excellence paradigm for enterprises. Support.

6. Limitations and future research

The application of LDA methods in lean manufacturing needs to rely 
on the structured recording of text data such as faults and production 
logs by enterprises, but language differences in different countries or 
regions may lead to limited modeling effectiveness. If the enterprise is 
located in a region that uses a small language or dialect, it also needs to 
customize and adjust the word segmentation rules and semantic data
base. Meanwhile, the LDA method relies on a large amount of text data 
for topic mining, but many traditional manufacturing enterprises have 
not yet established a systematic digital record system, which can lead to 
data fragmentation or lack of data.

Future research can combine pre-trained language models to opti
mize the ability of participle and semantic understanding, reduce the 
dependence on manually customized deactivated word lists, develop 
LDA enhancement tools that support multiple languages, adapt indus
trial terminology from different regions, and reduce the technical 

Fig. 9. The OEE trend from the 4th to the 12th week.
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Fig. 10. The topics of equipment failures that still exist during the improvement process.
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threshold. At the same time, we build an interactive LDA analysis plat
form that allows frontline employees to provide feedback on problems 
through natural language, and allows the model to generate optimiza
tion suggestions in real time and feed them back to the production 
management system, forming a closed loop of “problem discovery- 
improvement implementation”. Although the current application of 
LDA method in lean production is limited by language, data base and 
other factors, with the advancement of technology and the deepening of 
the digital transformation of enterprises, its potential will be gradually 
released to become one of the core tools to promote intelligent 
manufacturing and continuous improvement.
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