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In recent years, the global manufacturing industry has continuously undergone digital transformation amidst
intense competition. The traditional experience-based lean production model is inadequate to resolve issues like
declining equipment efficiency and frequent failures. This study proposes a fault diagnosis and improvement
strategy that integrates the LDA topic model with the Six Sigma DMAIC methodology, carrying out in-depth
analysis of failure factors in key processes on the production line and implementing a 12-week lean improve-
ment initiative in a case enterprise. The results show that after these improvements, the production line’s overall
equipment effectiveness (OEE) increased significantly from 71 % to 84 %, with a marked reduction in equipment
failure frequency, thereby ensuring enhanced production stability and reliability. This study overcomes the
limitations of traditional lean methodologies’ reliance on structured data by integrating data-driven decision-
making into the conventional Lean Six Sigma framework, not only providing a quantitative foundation for
equipment fault diagnosis but also offering new theoretical perspectives and practical pathways for continuous
improvement and intelligent transformation in manufacturing.

1. Introduction

In recent years, against the backdrop of intensified international
competition, the industrial sector has increasingly emphasized applying
lean production principles to corporate operations and management,
aiming to gain a competitive edge by eliminating waste and enhancing
efficiency and quality. Studies have shown that green lean practices not
only improve resource utilization and environmental performance but
also help enterprises better meet increasingly stringent sustainability
requirements [1]. Meanwhile, manufacturing business models are
gradually shifting from a traditional experience-driven approach to
data-driven operational decisions. By deeply integrating products and
services, enterprises can achieve more accurate demand forecasting and
continuous improvement [2]. However, as manufacturing systems
become increasingly digitalized and information-driven, relying solely
on experience-based management makes it difficult to maintain stable
and efficient operations in a complex and rapidly changing market.
Consequently, integrating Industry 4.0 technologies with lean method-
ologies has become an inevitable trend [3]. This integration not only
optimizes internal production and logistics processes but also employs
real-time data collection and digital decision-making to effectively
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address potential risks such as market fluctuations and supply chain
disruptions [4]. Furthermore, when constructing and operating a lean
production system, enterprises must balance flexibility and resilience,
ensuring they maintain a stable production rhythm and high-level ser-
vice even as external conditions shift [5]. In summary, lean production is
evolving from a traditionally experience-driven model into a data ana-
lytics- and technology-driven decision process, continually driving
transformation and upgrades in industrial operations.

In the context of Industry 4.0, the digital transformation of enter-
prises’ lean production systems requires data-driven decision-making
tools, which are strongly supported by the wide application of machine
learning methods. Huang et al. [6] applied deep learning models to
real-time storage detection of oil tanks in ports, which provides a data
base for industrial port management and resilience research. Huang
et al. [7] applied a machine learning approach to construct a vehicle
speed predictor for the energy management problem of fuel cell vehi-
cles. Li et al. [8] Hybrid computer vision approach for pavement crack
detection applying machine learning. As machine learning methods
continue to evolve, traditional lean manufacturing models also need to
move from empirically dependent localized improvements to systematic
innovations based on global data models. Latent Dirichlet Allocation
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(LDA) is an important data-driven decision-making tool that can be
flexibly applied to research in areas as diverse as technology trends [9],
urban climate [10], and supply chain [11], as well as to support the
digital transformation of lean manufacturing systems. By establishing a
three-layer Bayesian probabilistic model encompassing documents,
topics, and terms, LDA uncovers latent semantic correlations among
multimodal data in manufacturing systems, including equipment sensor
data, quality inspection reports, and supply chain texts. This approach
not only reveals hidden efficiency losses beyond the traditional "seven
wastes" but can also integrate green lean concepts to quantify the
coupling relationship between resource consumption and environ-
mental performance [3].

The current mainstream lean manufacturing model relies heavily on
manual experience and structured data analysis [12,13]. Compared with
the traditional lean model, the machine learning-enabled lean frame-
work is able to simultaneously parse temporal, spatial, and unstructured
data in the manufacturing system, breaking through the traditional
dependence on structured data for value stream analysis. Enzhi Dong
et al. (2025) proposed to train a Transformer network using equipment
historical data to determine the degradation categories of mechanical
systems and to dynamically obtain the probability distribution of the
remaining service life of the equipment using the Kernel Density Esti-
mation approach [14];Lubing Wang et al. (2025) used data monitored
by sensors to perform predictive maintenance on aircraft engines, pre-
dicting possible system failures in advance and taking proactive main-
tenance measures [15];Suhwan Lee et al. (2025) Predictive Maintenance
of Butterfly Valves in Ship Exhaust Systems Based on Ship Butterfly
Valve Number and Exhaust Time Interval Data [16]. However, in most
of the current predictive maintenance research, it needs to rely on
professional analysts to conduct a large number of experiments and data
analysis. The practical application of these predictive maintenance
methods in an organization requires a higher level of digital competence
from frontline employees, which adds a huge challenge to the opera-
tional cost as well as efficiency of the organization. Compared to
quantitative analysis methods that require a certain level of statistical
knowledge, LDA’s subject-matter word interpretation relies more on
business experience than on mathematical ability. In the manufacturing
industry, the equipment maintenance logs recorded by frontline em-
ployees may contain terms, abbreviations, and colloquial expressions of
their daily work, and LDA clusters these words into corresponding
themes. The generated topic words are directly mapped to the em-
ployees’ practical operations, avoiding the barrier of understanding
caused by abstract concepts. LDA can automatically identify descriptive
features related to equipment failures, extract potential topics of quality
defects from unstructured data, and provide data support for con-
structing an enterprise knowledge graph [17,18]. Meanwhile, LDA
supports incremental training, which can adjust the topics in real time
according to the new operation records added by employees, and
transforms abstract topics into intuitive vocabulary collections through
word clouds, heat maps, and other visualization tools.

In summary, data-driven decision-making in Industry 4.0 relies on
the fusion of heterogeneous data from multiple sources, while existing
Industry 4.0 platforms often face problems such as semantic discon-
nection of multimodal data and the existence of cross-process informa-
tion silos in the manufacturing site in practical applications. This study
applies the LDA methodology to the lean manufacturing framework to
break through the reliance on empirical as well as structured data in the
traditional production maintenance system, and to provide new appli-
cations and research ideas for the study of lean manufacturing and
predictive maintenance in the context of Industry 4.0.

2. Literature review
2.1. Lean six sigma

Lean Production originated from the Toyota Production System and
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centers on systematically identifying and eliminating non-value-adding
activities to enhance operational efficiency and product quality while
maximizing customer value [19].Guided by this principle, companies
must not only continually refine their production processes but also
emphasize effective coordination among personnel, equipment, and
materials [20]. Lean manufacturing is widely used in the manufacturing
industry thanks to the continuous improvement mechanism it estab-
lishes. Mojan Eskandari et al. (2022) used a lean framework to assess the
performance of pharmaceutical factories [21];Darian Pearce et al.
(2021) applied lean management in fruit horticulture in South Africa to
achieve sustainable primary production [22];and Alessia Bilancia et al.
(2025) applied the lean model to the luxury fashion industry to promote
the sustainability in luxury fashion [23]. On one hand, its focus on
"meeting customer needs" and "adding value to processes" enables
companies to flexibly adjust operations in ever-changing market con-
ditions; on the other hand, by minimizing waste, standardizing pro-
cesses, and encouraging employee participation, organizations strike a
balance among shorter delivery lead times, lower costs, and higher
quality. Whether in highly automated assembly lines or workshops
featuring manual or small-batch production, Lean Production helps
enterprises uncover opportunities for cost reduction and efficiency
gains, laying a solid foundation for subsequent efforts in sustainability
and digital transformation.

Six Sigma is a data-driven method for quality improvement and
process optimization aimed at reducing process variation through sys-
tematic steps, thereby enhancing overall operational performance [24].
Its core philosophy employs statistical tools and management tech-
niques to drive continuous improvement in production or service pro-
cesses, striving for near-zero defect levels [25]. In practice, Six Sigma’s
DMAIC (Define, Measure, Analyze, Improve, Control) framework is
widely used. Lokpriya M. Gaikwad et al. (2022) Implementation of Six
Sigma model to enhance the competitive advantage of firms [26];Ivana
Tita Bella Widiwati et al. (2024) Implementation of Lean Six Sigma
methodology to minimize wastage in food manufacturing industry [27];
Michael E. Natarus et al. (2025) Optimizing aseptic processing de-
partments, staffing increases, and capital investments using Lean Six
Sigma methodology [28]. By utilizing a scientific quantitative method-
ology and a series of structured improvement steps, Six Sigma not only
effectively reduces process waste, but also dramatically improves qual-
ity consistency while fostering a culture of continuous improvement
[29].

Lean Six Sigma is a continuous improvement methodology devel-
oped to synthesize the benefits of Lean Manufacturing and Six Sigma.
Lean Manufacturing advocates the elimination of unnecessary waste,
while Six Sigma utilizes statistical methods to keep defect rates at very
low levels. Lean Six Sigma combines these two approaches by not only
streamlining processes through Lean principles, but also by applying Six
Sigma’s quantitative methods to identify the root causes of problems,
resulting in both efficiency and quality improvements.

Most current Lean Six Sigma studies utilize tools such as value stream
mapping, Kanban, 5S, single-minute mold change, statistical process
control and hypothesis testing. Traditional Lean Six Sigma research tools
rely on manual experience to identify waste and lack a data-driven dy-
namic assessment model. Lean manufacturing is mostly based on
structured metrics and fails to effectively integrate semantic clues from
textual data such as equipment logs. Meanwhile, traditional Six Sigma
relies on normal distribution assumptions, which makes it difficult to
handle high-dimensional data and has limitations in adapting to com-
plex systems. Therefore, the Lean Six Sigma model needs to explore how
to deeply integrate with complex dynamic production environments and
unstructured data processing methods to achieve more efficient and
accurate process optimization, and to promote the upgrade of Lean Six
Sigma from staged improvement to continuous adaptive optimization.
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2.2. Latent dirichlet allocation

Latent Dirichlet Allocation (LDA) is a generative probabilistic topic
model widely employed to uncover latent topics from large-scale text
data. Its core concept views each document as a mixture of multiple
hidden themes, with each theme characterized by a probability distri-
bution of words [30]. Within this model, every word in the text is
assumed to be generated by a particular underlying topic governed by
Dirichlet priors, thereby enabling automatic discovery of topic struc-
tures under unsupervised conditions [31].

LDA has been applied in numerous domains, including energy and
environmental research on user energy consumption behavior [31],
literature-based topic mapping in supply chain and operations man-
agement [32], sentiment and preference analysis of online user reviews
[33], and evaluations of urban mobility and traffic policies [34]. By
representing text as a "bag of words" and using probabilistic inference to
distribute word frequencies among different topics, researchers can
intuitively capture the main issues underlying large amounts of textual
data, thus providing robust evidence for policy-making and operational
decisions [30].

In the LDA model, the generation of a document is treated as a
probabilistic procedure (Eq. (1)). The objective is to use the topic and
word distributions to describe the probability of each word occurring in
a given document.

N
P(w) = [ [ ¢, P(wal2; 0)P(2]d; 6) ¢3)
n=1

Where w is the set of all words in the document, w, represents the n-th
word in the document, z is a latent (unobserved) variable denoting the
topic to which wj, belongs, ¢ is the word distribution for each topic, and
0 is the topic distribution for the document.

Typically, LDA modeling involves several key steps. First, the text
data are collected and cleaned, followed by tokenization, removal of
stop words, and other preprocessing steps to reduce noise. Next, the
number of topics (k) and the hyperparameters a and p are set, and
iterative sampling or optimization is performed on the corpus to obtain
both the document-topic and topic-word distributions [30]. Finally, the
keywords associated with each topic are qualitatively analyzed and
labeled, and the model’s results are interpreted and applied in
conjunction with relevant domain knowledge and research context [35].

LDA demonstrates strong scalability and interpretability in the fields
of natural language processing and text mining, which has gradually
established it as a key tool for understanding large-scale text data.
Current research on LDA in manufacturing industry mostly focuses on
macro studies such as research theme analysis [36], bibliometrics [37],
and exploration of sustainable manufacturing paths [38], and lacks the
exploration of the application to the actual production of enterprises.

Measure

= Problem identification = Data collection

Purpose

*Process scoping * Capacity assessment

= Line graph
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Therefore, this study will combine the synergistic application of LDA
methods and Lean Six Sigma in enterprise production to provide new
ideas for production optimization in the context of Industry 4.0.

3. Methodology

This study employs a case study approach to investigate the funda-
mental causes impacting the overall equipment effectiveness (OEE) of
the company’s packaging production line and propose lean improve-
ment initiatives to boost production efficiency. The case study method
offers flexibility for conducting both quantitative and qualitative ana-
lyses of specific events within a company [39], and it is widely used
across various fields such as industrial production, healthcare, and
economics. The information and data required for this case were gath-
ered through on-site observation at the enterprise, as well as through
expert opinions from its production, engineering, and continuous
improvement departments. As shown in Fig. 1, the research framework
follows the five DMAIC phases of Six Sigma: Define, Measure, Analyze,
Improve, and Control to ensure that the research process is systematic
and scientific.

In the definition phase, the SIPOC model is used to clarify the pro-
duction process boundaries and core bottlenecks, and equipment reli-
ability is targeted as the key improvement goal in conjunction with
internal and external customer requirements. In the measurement stage,
the efficiency baseline is established by quantifying the comprehensive
efficiency indexes of the equipment, and the time loss is categorized to
identify the specific shortcomings in the three major dimensions of
equipment availability, performance efficiency and quality pass rate. In
the analysis stage, the LDA theme model is innovatively applied to
extract the core fault themes from the equipment fault records and verify
the root causes of the faults with on-site observation. In the improve-
ment phase, 5S on-site management, error-proof design, parameter
optimization and other measures are applied, and standardized main-
tenance processes are developed simultaneously to solidify the mea-
sures. In the control phase, real-time monitoring of equipment status,
construction of fault theme intensity heat map dynamic tracking of re-
sidual risk, and through the standardization of cleaning processes,
quality feedback mechanism to achieve continuous improvement. Data-
driven decision-making and cross-departmental collaboration are car-
ried out throughout the entire process, exploring the practical value of
integrating traditional Six Sigma tools with text mining technology.

4. The case study

This company ranks among the world’s largest fast-moving con-
sumer goods manufacturers. In the packaging workshop of this case-
study factory, each production line follows a similar workflow. For the
purposes of this study, one production line that is highly representative

Analyze Improve Control
*Identifying the source « Standardization and training
of the problem
«Implementation improvements .
. « Improved trend tracking
«Causal analysis
+ Pareto chart «Poka-Yoke + DA topics
358
+LDA topics +Targeted improvements <« Trend Heat Map

Fig. 1. Research framework.
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of industry standards was selected for case analysis. The primary prod-
uct processed on this line is a particular type of edible sauce, which is
one of the company’s top-selling items. However, the OEE of this pro-
duction line has remained below the target for an extended period,
resulting in financial losses and negatively impacting both customer
satisfaction and production output. Consequently, the company decided
to initiate a 12-week lean improvement project on this production line to
ensure a marked and stable increase in OEE, reaching a high-level target.
Fig. 2 presents the workflow of the selected packaging line, which in-
cludes seven major steps: bottle unloading, filling, cap placement, la-
beling, lane division, carton forming, boxing, sealing, and palletizing.

4.1. Define phase

In the Define phase, a SIPOC model (Supplier, Input, Process, Output,
Customer) was constructed to clarify and standardize each stage of the
production process, thereby identifying specific bottlenecks causing ef-
ficiency losses. The "Supplier" component refers to the pre-processing
department for raw materials, which delivers sterilized and seasoned
materials to the subsequent packaging stage. The "Input' comprises
various materials required for the packaging line, such as raw materials,
bottles, caps, labels, and cartons. The "Process" represents the main
technological steps in the packaging line, while the "Output" pertains to
the finished, packaged products. Finally, the "Customer" component
includes the wholesalers who sell the finished product. The detailed
SIPOC flow is illustrated in Fig. 3.

From the SIPOC model and on-site observations, it was determined
that the central bottleneck in the current workflow is low production
efficiency, which directly impedes the company’s ability to meet
customer demands. Moreover, by applying the Voice of the Customer
(VOC) method, the research team captured feedback from internal
customers (the pre-processing department and line operators) as well as
external customers (wholesalers), thus more intuitively pinpointing the
pain points arising from process bottlenecks. Wholesalers indicated that
production capacity is approaching its limit, compromising respon-
siveness to rising demand. Meanwhile, the pre-processing department
noted that frequent equipment downtime for maintenance significantly
disrupts the execution of production plans. In addition, the line opera-
tors reported that the production equipment operates inconsistently and
experiences frequent malfunctions, posing a serious drag on overall
production efficiency. Consequently, reliability and maintenance man-
agement of the equipment emerged as the core issues constraining

Bottle Unscrambler

Molding

Packing

Sealing
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production efficiency, necessitating targeted measures for improvement.

4.2. Measure phase

During the Measure phase, data were gathered over a 12-week
period, primarily focusing on the production line’s OEE indicator and
daily records of time losses. In the initial three weeks, the line’s OEE was
notably suboptimal; starting from the third week through the twelfth, a
Lean Six Sigma improvement plan was implemented to raise the line’s
OEE to a stable, high-level target.

OEE was first defined by Nakajima in 1988, classifying losses ac-
cording to three main dimensions—Availability (A), Performance (P),
and Quality (Q)—and six forms of loss, including breakdowns, setup and
adjustment losses, idling and minor stoppages, speed loss, defects and
rework, and startup losses [40]. In this case study, the company refined
the OEE calculation metrics by quantifying time-based waste to evaluate
the comprehensive efficiency of production line equipment (as shown in
Table 1) [40,41].

By collecting and measuring the company’s OEE data from Weeks 1
to 3 (Fig. 4), we found the OEE to be considerably below the world-class
benchmark of 85 % [39], and it showed a steadily declining trend. This
posed a serious threat to the company’s production efficiency, high-
lighting the urgent need for corrective action.

4.3. Analyze phase

In the Analysis phase, we first categorized the causes of equipment
failures and downtime according to the packaging line’s workflow and
major machines, dividing them into the following groups: filling ma-
chine, labeling machine, boxing machine, cap placement machine,
bottle unloading machine, sealing machine, forming machine, lane
divider, palletizing, and conveyor chain. Using a Pareto chart, we then
identified the equipment that accounted for only 20 % of downtime
incidents yet produced as much as 80 % of the negative impact on
overall operational efficiency (Fig. 5). The Pareto analysis revealed that
the filling machine, labeling machine, and boxing machine were
responsible for causing up to 80 % of the negative impact on overall
efficiency.

Next, we applied the LDA model to further analyze the factors that
lead to device failures and determine the optimal number of topics based
on the ease of mixing and consistency measurements. In terms of stop
words selection, we selected the list of commonly used stop words

Filling

Cap Sealer

Lane Divider Labeler

Hand Palletizing

Fig. 2. The working process of the packaging line in.
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Demand and Feedback
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Demand and Feedback

P Supplier Input Process ; Output Customer
Bottle Unloading
Filling
Raw Materials Cap Placement
Raw Material Pre- Bottlcs Labe.ln.lg. Finished Packaged )
. Bottle Caps Lane Division Wholesaler
Processing Department o Products
Labels Forming
Packaging Boxes Boxing
Sealing
Palletizing

Fig. 3. SIOPC definition process.

Table 1
A comparison of these metrics is provided.

Nakajima

Case Company

Availability (A) Loading time — downtime
Loading time
Ideal cycle time  output
Operating time
Input — volume of quality defects
Loading time

Performance (P)

Quality (Q)

OEE A*P*Q

Scheduled Time Total Available Time — Unscheduled Time

Production Time Scheduled Time — Planned losses
Full Rate Time Production Time — Unplanned Losses

OEE Full Rate Time
Scheduled Time

OEE from Week1 to Week3

80% e OEE

75%
72%

71%

70%

65%

60%

55%

Week 1 Week 2

Average

69%

Week 3

Fig. 4. The OEE trend from the 1st to the 3rd week.

published by the Natural Language Processing Laboratory of Harbin
Institute of Technology according to the location of the plant, which
includes such words as “the”, “is”, “in 7, “are”, “in”, “you” and so on. In
terms of topic count selection, the number of LDA topics in current

mainstream research needs to be determined based on one or more
different metrics, such as consistency, perplexity, or differences between
topics based on LDA visualization [42]. The higher the number of topics,
the lower the model’s perplexity will be, but the perplexity will continue
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Pareto Analysis of Equipment Fault Downtime

=== Frequency

- 100.00%
90 00%
80.00%
70.00%
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50.00%
10.00%
30.00%
20.00%
10.00%
0.00%

——— Cumulative Proportion

Fig. 5. Pareto analysis of equipment breakdown shutdowns.

to decline with the increase in the number of topics, when the generated
model will be overfitting, so it is also necessary to combine with the
consistency index to select the optimal number of topics comprehen-
sively. In this study, we set the number of potential themes in the range
of [1,10] as shown in Fig. 6, with a continuous decrease in the perplexity
level while the consistency level has a localized maximum at a theme
number of four. And in the visualized bubble map in Fig. 7, the bubbles
are uniform in size and do not overlap, and the theme classification is
largely consistent with the Pareto analysis, so the choice of 4 number of
themes as the optimal theme is robust.

Table 2 presents the distribution of topic keywords identified in this
study, which indicate four principal categories of equipment failures:
Topic 1, failures in the filling process; Topic 2, failures in the labeling
process; Topic 3, failures caused by bottle breakage in various stages;
and Topic 4, failures in the boxing process.

A combination of keywords from the four subject categories and on-
site observations revealed that: the main downtime issues for filling
machines were clogged nozzle lines, clogged filters, jammed inner caps,
jammed outer caps, and excessive foaming; the main causes of downtime
for labeling machines included misaligned labels, damaged labels, and
blurred print codes; and the main causes of downtime for case packers

Perplexity of topic modeling

The magnitude of perplexity

T T T T T T T T T

1 2 3 4 5 6 7 8 9 l'C
Number of topics

were loose or unlit sensors (photo-eyes), bottle grippers that were not in
alignment, and conveyor belt slippage. Also, bottle breakage can occur
at various points in the production line, which can lead to equipment
downtime.

4.4. Improve phase

In response to major downtime issues with the filling machines, or-
ganization and tidying up was first enhanced by sorting tools and items
around the equipment and introducing a Poka-yoke design, where items
are painted in eye-catching colors to ensure that maintenance staff can
quickly find the tools and accessories they need (Fig. 8). Next, cleaning
processes were standardized, and nozzles and filters were cleaned
regularly, especially in areas where dirt tends to accumulate, to prevent
clogging problems. At the same time, standardized operating procedures
for equipment maintenance were developed and implemented to reduce
operating abnormalities caused by excessive machine foam through
division of responsibilities and regular inspections. Finally, in response
to the problem of cap jamming, we have largely reduced the downtime
caused by cap jamming by replacing the original cap material with a cap
that separates the inner cap from the outer cap and a cap that integrates

Consistency of topic modeling
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Fig. 6. The perplexity and consistency of topic modeling.
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Fig. 7. Equipment Failure Topic Model.

the inner cap with the outer cap.

For the main downtime problems of the labeling machine, through
the production process, constantly adjust the transmission system and
positioning device of the labeling machine, to ensure the stability of the
label in the conveying process, and strengthen the precise control of the
labeling position. At the same time, optimize the nozzle settings of the
coding equipment to ensure that the ink flow and printing distance is in
the best state, and regularly clean the nozzles to prevent ink clogging
affect the quality of coding.

In response to the major downtime problems of the case packer, we
ensure that the photo eye remains stable during operation by tightening
the mounting parts. At the same time, check the installation status
regularly and deal with loose parts in time. Regularly check the power
supply and wiring connections of the photo eye to avoid failure due to
poor contact or aging of the wiring, and develop a maintenance plan for
cleaning the surface of the photo eye to prevent dirt from affecting the
detection effect.

To address the problem of bottle bursting that occurs in various
segments, the star wheel parts are adjusted as the entry point. The star
wheel is a key component in the conveyor system of the production line,
and its main function is to guide and position the bottles so as to keep
them stable during the processing such as conveying, filling and clean-
ing. If the gap, position or rotational speed of the star wheel is not
adjusted in place, it may cause bottles to be subjected to excessive stress
or collision during operation, thus increasing the risk of bottle bursting.
Therefore, by constantly adjusting and polishing the star wheel com-
ponents to optimize the gap, ensure that the rotational speed is matched,
and avoid excessive squeezing of bottles, the possibility of uneven stress
on bottles can be effectively reduced, thus reducing the probability of
bottle bursting and improving the stability and safety of the production
line.

In summary, as shown in Fig. 9, through the implementation of a
series of targeted improvement measures, the overall equipment

efficiency (OEE) of the production line improved significantly between
weeks 4 and 12, rising steadily from 71 % to 84 %, an increase of 13
percentage points. Together, these measures have enhanced the stabil-
ity, safety and efficiency of the production line, and the continued rise in
OEE fully validates the effectiveness of the improvements.

4.5. Control phase

In the control phase, using the same steps as in the analysis phase,
LDA topic modeling was performed on the failure records during the
improvement phase period to identify the distribution and evolution of
the topics that lead to equipment failures during the improvement
process. The results of the visualization are shown in Fig. 10, and the
main themes that still exist that can lead to equipment failures are: topic
1 failures in the conveying process, topic 2 failures in the cleaning
process, and topic 3 failures in the coding process.

For topic 1, in the control of the conveying link, establish a perfect
monitoring system to ensure that every part of the conveying link can be
tracked and detected in real time. Installing monitoring equipment in
key parts such as conveyor belts, sensors and drive systems to monitor
their operating status in real time can effectively detect potential failure
risks. In addition, the establishment of standard operating procedures
and a failure warning mechanism ensures quick response and resolution
when problems arise.

For topic2, in the control of the cleaning process, optimize the
cleaning process and the use of tools to ensure that all cleaning steps
comply with the standard operating procedures, to avoid equipment
failures caused by the use of improper tools or chemicals. We also
establish a cleaning quality inspection system, regularly evaluate the
cleaning effect, and timely rectify the problematic cleaning links to
ensure stable cleaning quality. At the same time, strengthen the opera-
tion of the staff training, improve their understanding of the importance
of the cleaning process and compliance with operating standards,
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Table 2
The distribution of topic terms.

Topic Term

Topicl Filling-stage failures Filling, Cap Sorter, Cleaning, Cap Jam,
Engineering, Blockage, Labeling Machine,
Star Wheel, Foam, Bottle Washing, Oil
Leakage, Half Bottle, Solenoid Valve,
Misalignment, Overload, Label Sticking,
Label Fly-off, Bottle Loading, Maintenance,
Boxing, Inner-Cap Channel, Waiting, Tank
Change, Blocked Passage, Cap-Separation
Disc, Filter, Cap Disc, Cap Feeding, Infeed,
Pipeline, Soy Sauce, Conveyor Chain, Filter
Mesh, Pressure, Alarm, Cause, Cap Blockage,
Photo-Eye, Screw, Production, Finished
Product, Sensor, Bottle Body, Machine
Freeze, Unable to Open, Low Speed, Air
Tube, Search, Connection Point, Frequent.
Labeling Machine, Label Fly-off, Labeling
Station, Cap Sorter, Bottle Breakage, Anti-
counterfeiting, Engineering, Filling, Bottle
Infeed, Label Sticking, Lead Screw,
Maintenance, Fracture, Star Wheel, Screw,
Boxing, Fastening, Barcode, Label
Misalignment, Misalignment, Photo-eye,
Alarm, Detachment, Rubber, Half Bottle,
Open, Finished Product, Bottle Unloading,
Deviation, Air Tube, Position, Tripod,
Removal, Damage, Label, Bottle Washing,
Foam, Bottle Feeding, Blowing Caps, Bottle
Jam, Guard Plate, Gluing, Tilt, Full Bottle,
Tear, Inspection, Cap Jam, Proportional
Valve, Feeding, Gripper Head.

Filling, Boxing, Labeling Machine, Bottle
Breakage, Bottle Washing, Labeling Station,
Foam, Star Wheel, Label Fly-off, Blockage,
Low Speed, Engineering, Cap Sorter, Label,
Fracture, Maintenance, Filter Mesh,
Cleaning, Platform, Gripper Head,
Misalignment, Oil Spray, Capping, Cap Press,
Anti-counterfeiting, Detachment, Safety
Door, Alarm, Speed, Operation, Photo-eye,
Glue, Inverted Bottle, Production, Bottle
Jam, Bottle Tray, Conveyor Chain, Machine
Gripper, Tank Change, Start-up, Infeed
Washing, Waiting, Pressure, Running,
Cleaning, Bottle Infeed, Bottle Loading,
Standby, Drum, Lead Screw.

Boxing, Labeling Machine, Misalignment,
Label Fly-off, Bottle Gripper, Labeling
Station, Bottle Infeed, Loose, Bottle
Breakage, Filling, Conveyor Chain, Bottle
Neck, Opening, Label, Lead Screw, Tipped
Bottle, Screw, Photo-eye, Machine Gripper,
Cap Sorter, Case Infeed, Capping Section,
Pipeline, Cap Feeding, Deviation, Belt, Air
Leak, Corner Curl, Cleaning, Capping,
Fastening, Platform, Cap Blockage,
Jamming, Dropping, Tilt, Fixing, Glue
Volume, Material Pushing, Beam, Bottle
Gripper Head, Damage, Star Wheel, Safety
Door, Cap Press, Tank Change, Tripod, Filter,
Finished Product, Soy Sauce.

Topic2  Labeling-stage failures

Topic3  Bottle-breakage-induced

failures at various stages

Topic4  Boxing-stage failures

effectively reduce the risk of equipment failure caused by human factors.

For topic3, in the control of the coding link, ensure the regular
maintenance and inspection of coding equipment, especially the clean-
ing and maintenance of printheads and ink systems, ensure that the
coding equipment undergoes the necessary inspections and adjustments
before and after use, and discover possible wear and tear or clogging
problems in a timely manner. At the same time, the implementation of
the coding quality monitoring system, the coding effect of each batch of
random checks and feedback to ensure that the quality of coding meets
the requirements.

Based on this, a heat map of theme intensity is further developed to
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Fig. 8. On-site Poka-yoke Examples.

show the change in intensity of the equipment failure themes present
during the improvement phase period, helping us to identify the
evolutionary trend of each theme over time. The heat map reflects the
heat level of each theme within a specific time period by color shades, i.
e., the frequency or intensity of the theme’s occurrence within that time
period. As shown in Fig. 11, the horizontal coordinate represents the
time dimension and the vertical coordinate represents the theme
dimension. The darker the color in the heat map means the higher the
heat of the corresponding theme in that period, and vice versa. In the
control phase, the problems that still existed and would lead to equip-
ment failure were effectively controlled, and the control measures not
only improved the stability and productivity of the equipment, but also
enhanced the reliability of the overall production process, guaranteed
the stability of product quality, and achieved the goal of continuous
improvement.

5. Conclusions

Compared with traditional methods, this study is able to identify root
causes and potential themes affecting equipment downtime more
effectively by applying the LDA method to production line equipment
failure analysis. In the analysis stage, when the root causes of the
problems are complex and not clearly categorized, the LDA method can
identify potential correlates through theme clustering and discover un-
defined problem clues. Traditional Lean analysis tools such as Pareto
charts require manual labeling of problem clusters and reflect the sur-
face of the problem, not revealing the complex cause and effect re-
lationships. In the control phase, traditional lean tools such as control
charts focus more on real-time responses to known indicators and
identify abnormal fluctuations through statistically structured data.
LDA’s thematic evolution approach is more forward-looking, generating
evolutionary path diagrams to capture long-term dynamic trends of
implicit semantic associations and warn of potential systemic failure
risks. Meanwhile, the integration of the LDA approach into the lean
manufacturing system in this study also has the advantage of cross-
environmental applicability because of its synergistic capability of
structured problem diagnosis and data-driven logic. By parsing un-
structured data such as equipment failure logs and process parameter
records through text mining techniques, common failure themes in
different production environments can be automatically clustered, and
this semantically-associated root cause analysis breaks through the
limitations of traditional empirical analysis. Whether it is a highly
automated factory or a labor-intensive packaging line, the LDA method



Y. Chen et al.

Results in Engineering 26 (2025) 104920

OEE from Weeks 4 to 12

84%
82%
80%
78%
76%
74%
72%
70%

Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 Week

84%

Week Week
10 11 12

Fig. 9. The OEE trend from the 4th to the 12th week.

can extract different potential problems by analyzing text records.

In the social and environmental aspects, the integration of LDA
methodology into the lean production system can systematically identify
the resource waste patterns and environmental impacts implicit in the
production process, thus providing a scientific basis for decision-making
to optimize resource utilization, reduce carbon emissions and achieve
sustainable development. By analyzing unstructured data such as pro-
duction documents, process records or environmental monitoring re-
ports, “waste themes” such as abnormal energy consumption, material
redundancy and inefficient processes can be unearthed and synergized
with the Lean Manufacturing’s resource lifecycle management and
continuous improvement mechanisms. This combination not only
strengthens lean production’s insight into “hidden waste” such as energy
loss in non-value-added activities, but also quantifies the priority of
environmental impacts through the probability distribution of themes,
guiding enterprises to accurately invest resources in process reengin-
eering, supply chain synergy, and green technological innovation. At the
same time, LDA’s dynamic thematic evolution analysis can track the
effects of improvement measures over time, which helps companies
build eco-lean systems that balance productivity, social responsibility
and ecological benefits.

In terms of methodological applicability, expanding the application
of LDA methodologies to non-manufacturing or automated systems re-
quires adaptations around the core capabilities of topic modeling and
data parsing. In the non-manufacturing sector, LDA can be used to
optimize business processes by analyzing textual data from business
processes to uncover themes of potential efficiency bottlenecks or
resource wastage. In automation systems, LDA can be combined with
real-time sensor data and operation logs to achieve anomaly monitoring
and decision-making optimization by dynamically updating topic
models. Maintenance records of automated equipment can be mapped to
production parameters as “fault-condition” correlation topics, which
can assist in the optimization of predictive maintenance algorithms. The
key to this cross-domain migration is to transform the “value stream
analysis” logic of lean manufacturing into a data-driven topic clustering
task, and at the same time break through the limitations of traditional
manufacturing data structures through algorithmic improvements.

In this study, in terms of the generalizability of the method, it can
adapt to the data characteristics of different production scenarios, and
the model can be flexibly adapted to differentiated production

environments, such as discrete manufacturing and process industries,
through the selection of the number of topics and the supplementation of
deactivated words. At the horizontal scalability level, the LDA method
can be used in intelligent manufacturing workshops by deploying edge
nodes for localized topic extraction of production anomaly reports
generated in real-time, and then aggregating the global topic distribu-
tion, which not only meets the demand for low-latency response but also
safeguards data privacy. At the vertical extension level, it can be com-
bined with different lean tools. When combined with value stream
mapping, non-value-added links can be identified by parsing theme
clustering in process documents; when combined with the On-Light
system, the theme evolution trend of equipment failure logs can be
mapped to the prediction of anomaly patterns in physical production
lines.

In summary, through theoretical analysis and case validation, this
study reveals the synergistic driving mechanism of the deep integration
of LDA methodology and Lean Six Sigma framework on the operational
excellence of enterprises, which breaks through the dependence of
traditional Lean tools on structured data and promotes the quality
improvement from passive corrective to active preventive, and provides
methodological support for the construction of the data-driven sus-
tainable operational excellence paradigm for enterprises. Support.

6. Limitations and future research

The application of LDA methods in lean manufacturing needs to rely
on the structured recording of text data such as faults and production
logs by enterprises, but language differences in different countries or
regions may lead to limited modeling effectiveness. If the enterprise is
located in a region that uses a small language or dialect, it also needs to
customize and adjust the word segmentation rules and semantic data-
base. Meanwhile, the LDA method relies on a large amount of text data
for topic mining, but many traditional manufacturing enterprises have
not yet established a systematic digital record system, which can lead to
data fragmentation or lack of data.

Future research can combine pre-trained language models to opti-
mize the ability of participle and semantic understanding, reduce the
dependence on manually customized deactivated word lists, develop
LDA enhancement tools that support multiple languages, adapt indus-
trial terminology from different regions, and reduce the technical
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threshold. At the same time, we build an interactive LDA analysis plat-
form that allows frontline employees to provide feedback on problems
through natural language, and allows the model to generate optimiza-
tion suggestions in real time and feed them back to the production
management system, forming a closed loop of “problem discovery-
improvement implementation”. Although the current application of
LDA method in lean production is limited by language, data base and
other factors, with the advancement of technology and the deepening of
the digital transformation of enterprises, its potential will be gradually
released to become one of the core tools to promote intelligent
manufacturing and continuous improvement.
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